Руководство по гидрологической практике

Том I
Гидрология: от измерений до гидрологической информации
Руководство по гидрологической практике

Том I
Гидрология: от измерений до гидрологической информации

ВМО-№ 168

Шестое издание
2011
ВМО-№ 168

© Всемирная Метеорологическая Организация, 2008

Право на опубликование в печатной, электронной или какой-либо иной форме на каком-либо языке сохраняется за ВМО. Небольшие выдержки из публикаций ВМО могут воспроизводиться без разрешения при условии четкого указания источника в полном объеме. Корреспонденцию редакционного характера и запросы в отношении частичного или полного опубликования, воспроизведения или перевода настоящей публикации следует направлять по адресу:

Chair, Publications Board
World Meteorological Organization (WMO)
7 bis, avenue de la Paix
P.O. Box 2300
CH-1211 Geneva 2, Switzerland
Тел.: +41 (0) 22 730 84 03
Факс: +41 (0) 22 730 80 40
Э-почта: publications@wmo.int

ПРИМЕЧАНИЕ

Обозначения, употребляемые в публикациях ВМО, а также изложение материала в настоящей публикации не означают выражения со стороны Секретариата ВМО какого бы то ни было мнения в отношении правового статуса какой-либо страны, территории, города или района, или их властей, а также в отношении делимитации их границ.

Мнения, выраженные в публикациях ВМО, принадлежат авторам и не обязательно отражают точку зрения ВМО. Упоминание отдельных компаний или какой-либо продукции не означает, что они одобрены или рекомендованы ВМО и что им отдаётся предпочтение перед другими аналогичными, но не упомянутыми или не прорекламированными компаниями или продукцией.
СОДЕРЖАНИЕ

<table>
<thead>
<tr>
<th>ГЛАВА 1. ВВЕДЕНИЕ</th>
<th>I.1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Общие сведения</td>
<td>I.1-1</td>
</tr>
<tr>
<td>1.2 Основные положения</td>
<td>I.1-1</td>
</tr>
<tr>
<td>1.3 Содержание Руководства</td>
<td>I.1-2</td>
</tr>
<tr>
<td>1.4 Гидрологическая оперативная многоцелевая система</td>
<td>I.1-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ГЛАВА 2. МЕТОДЫ НАБЛЮДЕНИЙ</th>
<th>I.2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Введение — гидрологический цикл как объект наблюдений</td>
<td>I.2-1</td>
</tr>
<tr>
<td>2.2 Информационные системы в области водных ресурсов</td>
<td>I.2-2</td>
</tr>
<tr>
<td>2.2.1 Потребность в данных и информации</td>
<td>I.2-2</td>
</tr>
<tr>
<td>2.2.2 Гидрологические информационные системы</td>
<td>I.2-3</td>
</tr>
<tr>
<td>2.2.3 Использование информации о водных ресурсах</td>
<td>I.2-5</td>
</tr>
<tr>
<td>2.2.4 Виды информации о водных ресурсах</td>
<td>I.2-6</td>
</tr>
<tr>
<td>2.3 Гидрологические условные обозначения, коды и точность измерений</td>
<td>I.2-7</td>
</tr>
<tr>
<td>2.3.1 Единицы измерения и обозначения</td>
<td>I.2-7</td>
</tr>
<tr>
<td>2.3.2 Гидрологические коды</td>
<td>I.2-12</td>
</tr>
<tr>
<td>2.3.3 Точность гидрологических измерений</td>
<td>I.2-13</td>
</tr>
<tr>
<td>2.3.4 Калибровка приборов</td>
<td>I.2-18</td>
</tr>
<tr>
<td>2.4 Проектирование и оценка гидрологических сетей</td>
<td>I.2-18</td>
</tr>
<tr>
<td>2.4.1 Общая концепция проектирования сети</td>
<td>I.2-18</td>
</tr>
<tr>
<td>2.4.2 Плотность станций сети</td>
<td>I.2-25</td>
</tr>
<tr>
<td>2.4.3 Особые требования к качеству воды</td>
<td>I.2-29</td>
</tr>
<tr>
<td>2.4.4 Сети для получения оперативных данных</td>
<td>I.2-35</td>
</tr>
<tr>
<td>2.4.5 Выбор стратегии создания сети</td>
<td>I.2-36</td>
</tr>
<tr>
<td>2.5 Сбор данных</td>
<td>I.2-36</td>
</tr>
<tr>
<td>2.5.1 Выбор местоположения пунктов наблюдений</td>
<td>I.2-36</td>
</tr>
<tr>
<td>2.5.2 Идентификация станций</td>
<td>I.2-37</td>
</tr>
<tr>
<td>2.5.3 Частота и время посещения станции</td>
<td>I.2-40</td>
</tr>
<tr>
<td>2.5.4 Обслуживание участков наблюдений</td>
<td>I.2-41</td>
</tr>
<tr>
<td>2.5.5 Наблюдения</td>
<td>I.2-42</td>
</tr>
<tr>
<td>2.5.6 Системы передачи информации</td>
<td>I.2-45</td>
</tr>
<tr>
<td>2.5.7 Мониторинг качества воды</td>
<td>I.2-46</td>
</tr>
<tr>
<td>2.5.8 Сбор специальных данных</td>
<td>I.2-49</td>
</tr>
<tr>
<td>2.6 Измерение физико-географических характеристик</td>
<td>I.2-49</td>
</tr>
<tr>
<td>2.6.1 Общие положения</td>
<td>I.2-49</td>
</tr>
<tr>
<td>2.6.2 Системы координат и структура данных</td>
<td>I.2-50</td>
</tr>
<tr>
<td>2.6.3 Измерения в точке</td>
<td>I.2-51</td>
</tr>
<tr>
<td>2.6.4 Линейные измерения</td>
<td>I.2-51</td>
</tr>
<tr>
<td>2.6.5 Измерения площадей</td>
<td>I.2-55</td>
</tr>
<tr>
<td>2.6.6 Измерения объема</td>
<td>I.2-57</td>
</tr>
<tr>
<td>2.6.7 Географические информационные системы</td>
<td>I.2-58</td>
</tr>
<tr>
<td>2.6.8 Новые технологии</td>
<td>I.2-58</td>
</tr>
<tr>
<td>2.6.9 Подготовка персонала</td>
<td>I.2-60</td>
</tr>
</tbody>
</table>

Ссылки и дополнительная литература | I.2-61
Глава 3. Измерение количества осадков

<table>
<thead>
<tr>
<th>Раздел</th>
<th>Описание</th>
<th>Стр.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Общие требования: точность и погрешность</td>
<td>I.3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>Размещение осадкомерных постов</td>
<td>I.3-1</td>
</tr>
<tr>
<td>3.3</td>
<td>Нерегистрирующие осадкомеры</td>
<td>I.3-3</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Общие положения</td>
<td>I.3-3</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Стандартные осадкомеры</td>
<td>I.3-4</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Суммарные осадкомеры</td>
<td>I.3-4</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Методы измерения</td>
<td>I.3-4</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Ошибки и точность отсчетов</td>
<td>I.3-5</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Корректировка систематических ошибок</td>
<td>I.3-5</td>
</tr>
<tr>
<td>3.4</td>
<td>Самопишущие осадкомеры</td>
<td>I.3-8</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Весовой плювиограф</td>
<td>I.3-8</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Поплавковый плювиограф</td>
<td>I.3-8</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Плювиограф с опрокидывающимся сосудом</td>
<td>I.3-8</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Приборы для записи интенсивности дождевых осадков</td>
<td>I.3-9</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Дисдрометры</td>
<td>I.3-9</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Акустический плювиограф</td>
<td>I.3-9</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Методы записи данных</td>
<td>I.3-9</td>
</tr>
<tr>
<td>3.5</td>
<td>Снег и град</td>
<td>I.3-10</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Глубина слоя выпавшего снег</td>
<td>I.3-10</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Водный эквивалент снег</td>
<td>I.3-11</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Снежный покров</td>
<td>I.3-11</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Наблюдения за градом</td>
<td>I.3-16</td>
</tr>
<tr>
<td>3.6</td>
<td>Оценка количества осадков по водному балансу водосбора</td>
<td>I.3-16</td>
</tr>
<tr>
<td>3.7</td>
<td>Наблюдения за осадками с помощью радиолокатора</td>
<td>I.3-16</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Применение радиолокатора в гидрологии</td>
<td>I.3-16</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Уравнение радиолокации (для осадков)</td>
<td>I.3-17</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Факторы, влияющие на измерения</td>
<td>I.3-17</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Снег и град</td>
<td>I.3-20</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Технология сканирования</td>
<td>I.3-20</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Краткий обзор соображений в отношении точности</td>
<td>I.3-20</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Доплеровский радиолокатор</td>
<td>I.3-21</td>
</tr>
<tr>
<td>3.7.8</td>
<td>Многофункциональные радиолокаторы</td>
<td>I.3-22</td>
</tr>
<tr>
<td>3.8</td>
<td>Наземные радиолокаторы и методы мониторинга осадков</td>
<td>I.3-22</td>
</tr>
<tr>
<td>3.9</td>
<td>Сети оперативных радиолокаторов</td>
<td>I.3-23</td>
</tr>
<tr>
<td>3.10</td>
<td>Измерение дождевых осадков методом затухания микроволн двойной частоты</td>
<td>I.3-23</td>
</tr>
<tr>
<td>3.11</td>
<td>Наблюдение за дождевыми осадками с помощью спутника</td>
<td>I.3-24</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Основные положения</td>
<td>I.3-24</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Видимый и инфракрасный диапазоны</td>
<td>I.3-24</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Пассивные микроволновые методы</td>
<td>I.3-25</td>
</tr>
<tr>
<td>3.11.4</td>
<td>Активные микроволновые методы (радиолокатор для определения параметров дождя; Проект по измерению осадков в тропиках)</td>
<td>I.3-26</td>
</tr>
<tr>
<td>3.11.5</td>
<td>Краткий обзор соображений в отношении точности</td>
<td>I.3-27</td>
</tr>
<tr>
<td>3.12</td>
<td>Дистанционные методы измерения снега</td>
<td>I.3-28</td>
</tr>
<tr>
<td>3.13</td>
<td>Спутниковое дистанционное зондирование снежного покрова</td>
<td>I.3-29</td>
</tr>
<tr>
<td>3.14</td>
<td>Оперативные спутники</td>
<td>I.3-30</td>
</tr>
<tr>
<td>3.15</td>
<td>Роса</td>
<td>I.3-31</td>
</tr>
<tr>
<td>3.16</td>
<td>Взятие проб осадков для определения их качества</td>
<td>I.3-32</td>
</tr>
<tr>
<td>3.16.1</td>
<td>Коллекторы для взятия проб дождя и снег</td>
<td>I.3-32</td>
</tr>
<tr>
<td>3.16.2</td>
<td>Сбор суших осаждений</td>
<td>I.3-32</td>
</tr>
<tr>
<td>3.17</td>
<td>Усвоение данных о количестве осадков в гидрологических и гидравлических моделях: объединение и оценка данных из различных источников</td>
<td>I.3-33</td>
</tr>
<tr>
<td>3.18</td>
<td>Глобальный проект по климатологии осадков</td>
<td>I.3-33</td>
</tr>
<tr>
<td>Ссылки и дополнительная литература</td>
<td>I.3-33</td>
<td></td>
</tr>
</tbody>
</table>
СОДЕРЖАНИЕ

Глава 4. Испарение, суммарное испарение и влажность почвы ... I.4-1
4.1 Испарение, суммарное испарение и перенос осадков ... I.4-1
4.1.1 Общие положения .. I.4-1
4.1.2 Определения .. I.4-1
4.1.3 Измерение испарения ... I.4-2
4.1.4 Измерение суммарного испарения ... I.4-6
4.1.5 Измерения испарения и суммарного испарения с помощью дистанционного зондирования ... I.4-7
4.2 Оценка испарения со свободных поверхностей ... I.4-8
4.2.1 Общие положения .. I.4-8
4.2.2 Метод водного баланса .. I.4-8
4.2.3 Метод энергетического баланса ... I.4-9
4.2.4 Метод переноса массы .. I.4-11
4.2.5 Совместное применение методов аэродинамики и энергетического баланса I.4-11
4.2.6 Экстраполяция данных водных испарителей ... I.4-13
4.2.7 Эмпирические формулы ... I.4-14
4.3 Суммарное испарение с водосборных бассейнов ... I.4-17
4.3.1 Общие положения .. I.4-17
4.3.2 Метод водного баланса .. I.4-17
4.3.3 Метод энергетического баланса ... I.4-18
4.3.4 Аэродинамический метод .. I.4-18
4.3.5 Метод Пенмана-Монтейта .. I.4-19
4.3.6 Метод Пристли-Тейлора (радиационный метод) .. I.4-20
4.3.7 Дополнительный метод ... I.4-20
4.3.8 Метод, учитывающий коэффициент культур и эталонную звapotranspirацию I.4-20
4.3.9 Ширикоапертурный сцинтилляционный счетчик .. I.4-21
4.4 Уменьшение испарения .. I.4-21
4.4.1 Со свободных поверхностей .. I.4-21
4.4.2 С поверхности почвы .. I.4-21
4.5 Измерение влажности почвы .. I.4-22
4.5.1 Общие положения .. I.4-22
4.5.2 Количественные методы .. I.4-23
4.5.3 Качественные методы .. I.4-28
4.5.4 Дистанционное зондирование ... I.4-30

Ссылки и дополнительная литература ... I.4-31

Глава 5. Количество поверхностных вод и измерение наносов .. I.5.1
5.1 Уровни воды рек, озер и водохранилищ .. I.5-1
5.1.1 Общие положения .. I.5-1
5.1.2 Устройства для измерения уровня воды ... I.5-1
5.1.3 Порядок измерения уровня воды .. I.5-2
5.1.4 Частота измерений уровня воды .. I.5-3
5.2 Лед на реках, озерах и водохранилищах .. I.5-3
5.2.1 Общие положения .. I.5-3
5.2.2 Элементы ледового режима .. I.5-3
5.2.3 Методы наблюдений .. I.5-3
5.2.4 Сроки и частота наблюдений ... I.5-4
5.2.5 Точность измерений .. I.5-4
5.3 Измерение и расчет расхода воды ... I.5-4
5.3.1 Общие положения .. I.5-4
5.3.2 Измерение расхода воды при помощи гидрометрических вертушек I.5-4
5.3.3 Измерение расхода воды с помощью поплавков .. I.5-10
5.3.4 Измерение расхода методом смешения ... I.5-11
Глава 7. Качество воды и водные экосистемы

7.1 Общие положения
7.2 Особые требования к мониторингу качества воды
7.2.1 Параметры качества воды
7.2.2 Качество поверхностных вод
7.2.3 Качество осадков
7.2.4 Качество подземных вод
7.2.5 Качество отложений
7.3 Методы отбора проб
7.3.1 Виды проб воды
7.3.2 Отбор воды репрезентативных проб воды
7.3.3 Отбор проб для анализа стабильных изотопов воды

Ссылки и дополнительная литература

 prowodstvo po gidrologicheskoj praktike

5.3.5 Расчет расхода воды косвенными методами I.5-12
5.3.6 Измерение расхода воды в трудных условиях I.5-13
5.3.7 Нетрадиционные методы измерения расхода воды I.5-17
5.4 Гидрометрические станции .. I.5-21
5.4.1 Назначение гидрометрических станций .. I.5-21
5.4.2 Выбор пункта наблюдений ... I.5-22
5.4.3 Контроль связи между уровнем и расходом .. I.5-22
5.4.4 Измерительные сооружения ... I.5-23
5.4.5 Зависимость между уровнем и расходом .. I.5-24
5.4.6 Расчет среднего уровня воды измерения расхода I.5-26
5.5 Расход наносов и твердый сток ... I.5-26
5.5.1 Общие положения .. I.5-26
5.5.2 Выбор створа ... I.5-26
5.5.3 Измерение расхода взвешенных наносов ... I.5-26
5.5.4 Измерение расхода донных наносов .. I.5-28

Ссылки и дополнительная литература ... I.5-30

Глава 6. Подземные воды ... I.6-1

6.1 Общие положения .. I.6-1
6.2 Появление подземных вод ... I.6-1
6.2.1 Водоносные геологические образования .. I.6-1
6.2.2 Разработка гидрогеологической сети .. I.6-2
6.3 Наблюдательные скважины ... I.6-8
6.3.1 Установка наблюдательных скважин .. I.6-8
6.3.2 Испытание наблюдательных скважин ... I.6-11
6.3.3 Закупорка и заполнение заброшенных скважин I.6-13
6.4 Измерение уровня подземных вод и сети наблюдательных скважин I.6-13
6.4.1 Приборы и методы наблюдений ... I.6-13
6.5 Гидравлические свойства водоносных горизонтов и водоупоров I.6-22
6.5.1 Гидравлические параметры ... I.6-22
6.5.2 Обзор общепринятых полевых методов для определения гидравлических параметров ... I.6-22
6.6 Пополнение и расход, источники и водосливы в системе подземных вод ... I.6-24
6.6.1 Пополнение за счет осадков ... I.6-24
6.6.2 Взаимодействие подземных и поверхностных вод I.6-24
6.6.3 Откачивание воды из скважины ... I.6-25
6.7 Использование данных в моделях подземных вод I.6-25
6.8 Дистанционное зондирование .. I.6-26

Ссылки и дополнительная литература ... I.6-27

Глава 7. Качество воды и водные экосистемы I.7-1

7.1 Общие положения .. I.7-1
7.2 Особые требования к мониторингу качества воды I.7-1
7.2.1 Параметры качества воды ... I.7-1
7.2.2 Качество поверхностных вод ... I.7-1
7.2.3 Качество осадков .. I.7-4
7.2.4 Качество подземных вод ... I.7-4
7.2.5 Качество отложений ... I.7-5
7.3 Методы отбора проб ... I.7-6
7.3.1 Виды проб воды .. I.7-6
7.3.2 Отбор воды репрезентативных проб воды I.7-6
7.3.3 Отбор проб для анализа стабильных изотопов воды I.7-7
<table>
<thead>
<tr>
<th>ГЛАВА 8. УСЛОВИЯ СОБЛЮДЕНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ В ГИДРОМЕТРИИ</th>
<th>I.8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Общая практика ... I.8-1</td>
</tr>
<tr>
<td>8.2</td>
<td>Меры безопасности на гидрометрических станциях с самописцами ... I.8-1</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Подходы к постам ... I.8-1</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Платформы .. I.8-1</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Колодцы ... I.8-1</td>
</tr>
<tr>
<td>8.3</td>
<td>Меры предосторожности при работе с мостов ... I.8-2</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Опасность со стороны транспорта ... I.8-2</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Опасность со стороны подвесного оборудования ... I.8-2</td>
</tr>
<tr>
<td>8.4</td>
<td>Меры безопасности во время проведения измерений вброд I.8-2</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Общие положения ... I.8-2</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Оценка ситуации ... I.8-2</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Применение спасательных жилетов I.8-2</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Меры безопасности при использовании каната или размеченного троса I.8-2</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Методика перехода вброд I.8-2</td>
</tr>
<tr>
<td>8.4.6</td>
<td>Поведение в случае падения I.8-3</td>
</tr>
<tr>
<td>8.5</td>
<td>Меры предосторожности при работе с лодок ... I.8-3</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Общие положения ... I.8-3</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Спасательные жилеты и средства безопасности I.8-3</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Применение канатов ... I.8-3</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Использование шлюпок I.8-4</td>
</tr>
<tr>
<td>8.6</td>
<td>Меры безопасности при работе с канатных переправ .. I.8-4</td>
</tr>
<tr>
<td>8.7</td>
<td>Меры предосторожности при работе с ручным оборудованием ... I.8-4</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Топографическая съемка I.8-4</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Цепные пильы ... I.8-4</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Электрооборудование ... I.8-5</td>
</tr>
<tr>
<td>8.7.4</td>
<td>Электроинструменты ... I.8-5</td>
</tr>
<tr>
<td>8.7.5</td>
<td>Защитная одежда и средства защиты I.8-5</td>
</tr>
<tr>
<td>8.7.6</td>
<td>Радиоактивное оборудование I.8-5</td>
</tr>
<tr>
<td>8.7.7</td>
<td>Вопросы безопасности при наблюдении за подземными водами I.8-5</td>
</tr>
<tr>
<td>8.7.8</td>
<td>Угроза пыли ... I.8-5</td>
</tr>
</tbody>
</table>
ГЛАВА 9. ОБРАБОТКА ДАННЫХ И КОНТРОЛЬ КАЧЕСТВА ... I.9-1

9.1 Общие положения ... I.9-1

9.2 Принципы, соглашения и стандарты ... I.9-1
 9.2.1 Консерватизм, очевидность и предположения ... I.9-1
 9.2.2 Стандарты и требования точности данных ... I.9-2

9.3 Кодирование .. I.9-3
 9.3.1 Общие положения ... I.9-3
 9.3.2 Разработка кодов ... I.9-3
 9.3.3 Коды местоположения ... I.9-4
 9.3.4 Коды переменных (параметров) ... I.9-4
 9.3.5 Коды квалификации данных ... I.9-4
 9.3.6 Коды пропусков в данных ... I.9-4
 9.3.7 Коды передачи данных ... I.9-4
 9.3.8 Географические информационные системы ... I.9-5

9.4 Сбор данных .. I.9-5
 9.4.1 Ввод с клавиатуры ... I.9-5
 9.4.2 Запись данных графика ... I.9-6
 9.4.3 Данные на перфоленте ... I.9-6
 9.4.4 Регистрация электронных данных ... I.9-6

9.5 Первичная обработка данных ... I.9-6
 9.5.1 Общие положения ... I.9-6
 9.5.2 Предварительная проверка данных ... I.9-7
 9.5.3 Прослеживаемость и обработка ... I.9-9
 9.5.4 Запись данных и отслеживание изменений в них ... I.9-9
 9.5.5 Идентификация и сохранение оригинальных записей ... I.9-9
 9.5.6 Преобразование данных с учетом известных ошибок ... I.9-10
 9.5.7 Накопление и интерполяция данных ... I.9-10
 9.5.8 Вычисление производных переменных ... I.9-11
 9.5.9 Статус данных ... I.9-11

9.6 Особые процедуры первичной обработки ... I.9-11
 9.6.1 Климатологические данные ... I.9-12
 9.6.2 Данные о речном стоке ... I.9-13
 9.6.3 Данные о качестве воды ... I.9-15
СОДЕРЖАНИЕ

<table>
<thead>
<tr>
<th>Стр.</th>
<th>Глава</th>
<th>Тема</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.9-16</td>
<td>9.7</td>
<td>Вторичная обработка</td>
</tr>
<tr>
<td>I.9-16</td>
<td>9.7.1</td>
<td>Проблемы, обычно возникающие после компьютерной обработки</td>
</tr>
<tr>
<td>I.9-17</td>
<td>9.7.2</td>
<td>Ввод оцениваемых недостающих данных</td>
</tr>
<tr>
<td>I.9-19</td>
<td>9.8</td>
<td>Валидация и контроль качества</td>
</tr>
<tr>
<td>I.9-19</td>
<td>9.8.1</td>
<td>Общие процедуры</td>
</tr>
<tr>
<td>I.9-19</td>
<td>9.8.2</td>
<td>Методы автоматической валидации</td>
</tr>
<tr>
<td>I.9-20</td>
<td>9.8.3</td>
<td>Плановые проверки</td>
</tr>
<tr>
<td>I.9-20</td>
<td>9.8.4</td>
<td>Испытания станций</td>
</tr>
<tr>
<td>I.9-21</td>
<td>9.8.5</td>
<td>Проверка данных, собранных вручную</td>
</tr>
<tr>
<td>I.9-22</td>
<td>9.8.6</td>
<td>Проверка данных с графика</td>
</tr>
<tr>
<td>I.9-22</td>
<td>9.8.7</td>
<td>Проверка регистрируемых данных</td>
</tr>
<tr>
<td>I.9-22</td>
<td>9.9</td>
<td>Особые процедуры валидации</td>
</tr>
<tr>
<td>I.9-23</td>
<td>9.9.1</td>
<td>Данные о стоке</td>
</tr>
<tr>
<td>I.9-24</td>
<td>9.9.2</td>
<td>Уровень воды</td>
</tr>
<tr>
<td>I.9-24</td>
<td>9.9.3</td>
<td>Данные о дождевых осадках</td>
</tr>
<tr>
<td>I.9-26</td>
<td>9.9.4</td>
<td>Климатологические данные</td>
</tr>
<tr>
<td>I.9-26</td>
<td>9.9.5</td>
<td>Данные о снеге и льде</td>
</tr>
<tr>
<td>I.9-27</td>
<td>9.9.6</td>
<td>Данные гидрометрических станций</td>
</tr>
<tr>
<td>I.9-27</td>
<td>9.9.7</td>
<td>Данные о качестве воды</td>
</tr>
<tr>
<td>I.9-28</td>
<td>9.9.8</td>
<td>Данные о насосах</td>
</tr>
<tr>
<td>I.9-28</td>
<td>9.10</td>
<td>Неопределенность записи данных</td>
</tr>
<tr>
<td>I.9-29</td>
<td></td>
<td>Ссылки и дополнительная литература</td>
</tr>
</tbody>
</table>

Глава 10. ХРАНЕНИЕ, ДОСТУП И РАСПРОСТРАНЕНИЕ ДАННЫХ

<table>
<thead>
<tr>
<th>Стр.</th>
<th>Подглава</th>
<th>Тема</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.10-1</td>
<td>10.1</td>
<td>Введение</td>
</tr>
<tr>
<td>I.10-1</td>
<td>10.1.1</td>
<td>Важность данных</td>
</tr>
<tr>
<td>I.10-1</td>
<td>10.1.2</td>
<td>Процесс управления данными</td>
</tr>
<tr>
<td>I.10-4</td>
<td>10.2</td>
<td>Хранение и извлечение данных из архива</td>
</tr>
<tr>
<td>I.10-4</td>
<td>10.2.1</td>
<td>Хранение данных</td>
</tr>
<tr>
<td>I.10-5</td>
<td>10.2.2</td>
<td>Методы хранения</td>
</tr>
<tr>
<td>I.10-7</td>
<td>10.2.3</td>
<td>Типы архивируемых данных и информации</td>
</tr>
<tr>
<td>I.10-17</td>
<td>10.3</td>
<td>Извлечение данных</td>
</tr>
<tr>
<td>I.10-17</td>
<td>10.3.1</td>
<td>Средства анализа данных</td>
</tr>
<tr>
<td>I.10-17</td>
<td>10.3.2</td>
<td>Извлечение данных с одной переменной</td>
</tr>
<tr>
<td>I.10-18</td>
<td>10.3.3</td>
<td>Система поиска данных</td>
</tr>
<tr>
<td>I.10-20</td>
<td>10.4</td>
<td>Распространение данных</td>
</tr>
<tr>
<td>I.10-20</td>
<td>10.4.1</td>
<td>Общие положения</td>
</tr>
<tr>
<td>I.10-20</td>
<td>10.4.2</td>
<td>Каталоги доступности данных</td>
</tr>
<tr>
<td>I.10-21</td>
<td>10.4.3</td>
<td>Краткие сводки</td>
</tr>
<tr>
<td>I.10-21</td>
<td>10.4.4</td>
<td>Ежегодники</td>
</tr>
<tr>
<td>I.10-25</td>
<td>10.4.5</td>
<td>Экспорт данных на заказ</td>
</tr>
<tr>
<td>I.10-25</td>
<td>10.4.6</td>
<td>Форматы обмена данными</td>
</tr>
</tbody>
</table>

Ссылки и дополнительная литература | I.10-29

ПРИЛОЖЕНИЕ. Сокращения | I.Прилож.-1
В сентябре 2000 года мировые лидеры приняли Декларацию тысячелетия Организации Объединенных Наций, в которой был сформулирован перечень из восьми оговоренных по срокам и поддающихся оценке целей и задач, направленных на борьбу с нищетой, голодом, заболеваниями, неграмотностью, деградацией окружающей среды и гендерным неравенством. Эти восемь целей известны как Цели развития тысячелетия (ЦРТ) Организации Объединенных Наций. Достижение каждой из этих целей в значительной мере зависит от наличия и доступности пригодной для потребления пресной воды, а также от защиты населения от разрушительных последствий наводнений. Это, в свою очередь, возлагает большую ответственность на национальные гидрологические и гидрометеорологические службы, которые должны предпринимать все необходимые действия на национальном уровне в условиях постоянно возрастающего спроса на ограниченные запасы пресной воды в странах — членах ВМО. В трансграничных бассейнах, где, в частности, часто возникают проблемы, связанные с необходимостью справедливого распределения этих ограниченных ресурсов, заинтересованные прибрежные страны должны устанавливать и поддерживать соответствующие механизмы для их распределения.

Одна из задач Всемирной Метеорологической Организации (ВМО) заключается в содействии стандартизации метеорологических и гидрологических наблюдений и обеспечении единообразия при публикации данных наблюдений и результатов их статистической обработки. С этой целью Всемирный метеорологический конгресс традиционно принимает Технический регламент, в котором сформулированы метеорологическая и гидрологическая практики и правила, которых должны придерживаться страны — члены ВМО. Этот Технический регламент (ВМО-№ 49) дополнен рядом инструкций и руководств, в которых более подробно изложены процедуры, предписанные или рекомендуемые к использованию странами-членами при мониторинге и оценке своих водных ресурсов. Таким образом, мы надеемся, что улучшенное единообразие и стандартизация в гидрологической практике и процедурах внесут вклад в укрепление сотрудничества между странами — членами ВМО и еще больше облегчат их взаимодействие на региональном и международном уровнях.

Цель Руководства по гидрологической практике состоит в предоставлении соответствующей информации для всех экспертов, работающих в области гидрологии, в существующих правилах, процедурах и оборудовании, необходимых для обеспечения их успешной деятельности. Полное изложение теоретических основ и всего спектра применений гидрологических методов и оборудования выходит за рамки основных задач настоящего Руководства. Однако в соответствующих случаях даются ссылки на необходимую литературу. Более детализированные процедуры мониторинга гидрологических параметров рассматриваются в специальных наставлениях ВМО.

Надеемся, что настоящее Руководство окажется полезным не только национальным службам стран-членов, но также различным заинтересованным сторонам и учреждениям, занимающимся как рациональным использованием водных ресурсов в целом, так и их мониторингом и оценкой в частности. В этой связи Комиссия по гидрологии ВМО (КГи) решила сделать настоящее Руководство «живым» документом, который будет размещен в Интернете и периодически обновляться. Данное Руководство станет элементом Структуры управления качеством ВМО — Гидрология, которая в настоящее время разрабатывается с целью оказания поддержки странам — членам ВМО и их национальным службам путем обеспечения безусловной эффективности и результативности осуществляемой ими деятельности, такой как получение гидрологических данных или предоставление обслуживания и продукции. Пользователям Руководства предлагается продолжать направлять свои замечания и предложения по его дальнейшему усовершенствованию.

Руководство по гидрологической практике издается на английском, испанском, русском и французском языках. В то же время, как это было и в предыдущих случаях, некоторые страны — члены ВМО заявили о своем намерении перевести данное Руководство на свои национальные языки.

Я с большим удовольствием выражаю благодарность Комиссии по гидрологии ВМО, которая взяла на себя инициативу по осуществлению контроля над процессом редактирования настоящего Руководства по гидрологической практике.

(М. Жарро)
Генеральный секретарь
В соответствии с выраженными потребностями своих стран-членов Комиссия по гидрологии ВМО решила исправить и дополнить данное шестое издание Руководства по гидрологической практике (далее — Руководство). Это решение было принято на основании комментариев и опыта использования пятого издания Руководства и признания его значительной ценности для национальных гидрологических служб и специалистов, работающих в области гидрологии. Более 40 опытных экспертов всего мира внесли вклад в подготовку данного издания Руководства. В результате оно ориентировано на практическое применение и укладывается в структуру управления качеством, которая была предложена Комиссией по гидрологии. Я с большим удовольствием выражаю благодарность от имени Комиссии всем тем экспертам, которые выразили желание принять участие в сборе материалов и процессе его обработки и способствовали выполнению этой непростой задачи.

Также я выражаю глубокую благодарность членам редакционного комитета, учрежденного Комиссией по гидрологии, которая осуществляла контроль над процессом редактирования Руководства. Редакционный комитет, возглавляемый Карлом Хофгусом (Германия), в составе Суреша Чандры (Индия), Дениса Хагеса (ЮАР), Фреда Кюсингира (Уганда), Поля Пилона (Канада), Марко Поло Риверо (Венесуэла) и Авинаша Тиги (директора Департамента климата и воды ВМО), выполнил большую работу по выявлению тех разделов пятого издания Руководства, которые подлежали пересмотру и обновлению, по назначению экспертов, ответственных за внесение изменений и редактирование различных глав и разделов Руководства, а также по рецензированию полученных от них материалов.

Я выражаю искреннюю благодарность и признательность всем экспертам, которые внесли вклад в подготовку и рецензирование нового издания Руководства. Над обновлением и редактированием глав (указаны в скобках) первого тома Руководства работали следующие специалисты: Свейн Харстен (главы 2 и 5), Роберт Халидей (глава 2), Крис Колльер (глава 3), Каран С. Бхатия (глава 4), Ахмед Фахми (глава 5), Антони Навой (глава 6), Энн Кудрен (глава 7), Альберт Ругумайо (глава 8), Джон Фенвич (глава 9), а также Мэттью Фри и Фрэнк Фаркухарсон (глава 10).

Экспертный обзор подготовленных материалов для различных глав выполнили: Роберт Халидей (глава 2), Никлас Кувен (глава 3), Мауру Гренпи (глава 4), Свейн Харстен (глава 5), Джоюнания Мария Цуппи (глава 6), Валерию Вендегна (глава 7), Филиппо Тьерри и Фабио Сантамария (глава 8), Мария-Моника Покка (глава 9), а также Брюс Стоарт (глава 10).

Следующие эксперты внесли вклад в пересмотр различных глав тома II Руководства (указаны в скобках): Арии Сноррассон (глава 2), Пол Мисли (материалы из главы 2), Брюс Митчелл (глава 3), Тинус Бассон (раздел 4.2), Суреш Чандра (раздел 4.3), П. Б. С. Сарма (раздел 4.4), Вальдемар Андреас (раздел 4.5), Денис Мосье (разделы 4.5, 4.6), Кено Дроге (раздел 4.6), Карлос Туччи (раздел 4.7), Шанкар Б. Куларни (раздел 4.8), Карлос Мейер (раздел 4.9), Каз Адамовски (глава 5), Збигнев В. Кунджевич (глава 6), а также Курт Баррет, Коста Георгакакос, Ян Клюки, Пол Мисли, Сергей Борз и Джеймс Дент (глава 7). Вклад в виде материалов по последним научно-техническим достижениям в области дистанционного зондирования был внесен Эдвином Энгманом и Ахаламом Шалаби (различные главы).

Экспертный обзор материала второго тома выполнили следующие эксперты: Пол Мисли (глава 3), Ричард Мюллер (раздел 4.2), Понсусарси Соорияккумаран (раздел 4.3), Марио Фуганца (раздел 4.4), Вальдемар Андреас и Денис Мисли (раздел 4.5), Хуссам Фахми и Маха Тайфих (раздел 4.6), Джим Эллнот (раздел 4.7), Кристоф Алексис (раздел 4.8), Денис Хугес (раздел 4.9), Мануэль Иригоян и Энрико Тодино (глава 5), Паоло Мицюса (глава 6), Илмар Краф и Лильяс Эрик (глава 7), Джакомо Теругги, Джон Басс и Артур Аскью оказали большую и существенную поддержку в процессе подготовки настоящего Руководства посредством обеспечения координации работы авторов и улучшения необходимого технического редактирования материалов. И что самое главное, публикация не стала бы возможной без активной поддержки персонала Секретариата ВМО.

Шестое издание Руководства станет живым документом, и его Интернет-версия будет обновляться по мере того, как будут появляться значительные практические достижения в различных областях. Поскольку Руководство применяется и используется на практике, оно может быть улучшено благодаря комментариям и предложениям гидрологического сообщества. Комиссия по гидрологии постарается поддерживать Руководство на уровне современных требований, принимая во внимание отзывы и комментарии своих членов.

(Брюс Стоарт)
Президент Комиссии по гидрологии
Глава 1

Введение

1.1 Общие сведения

Гидрология представляет собой науку, изучающую формирование и распространение воды на Земле во времени и пространстве, над и под поверхностью земли, включая их химические, биологические и физические свойства, и их взаимодействие с окружающей средой (ВМО/ЮНЕСКО, 1992 г.). Она дает представление о различных фазах воды, наблюдаемых при поступлении воды на поверхность Земли из атмосферы и возвращении обратно в атмосферу. Основы гидрологии используются для оценки и управления водными ресурсами, при решении практических проблем, связанных с наводнениями и засухами, эрозией почвогрунтов, транспортировкой наносов, а также с загрязнением вод. Постоянно возрастающее давление на имеющиеся водные ресурсы, осуществляемое в целях улучшения экономического благосостояния, и проблемы загрязнения поверхностных и подземных вод выдвинули гидрологию на первое место при решении многих задач, связанных с водой и окружающей средой.

Для того чтобы предоставить рекомендации в области мониторинга этого жизненно важного ресурса, который занимает центральное место в развитии и благосостоянии человечества, Комиссия Всемирной Метеорологической Организации (ВМО) по гидрологии на своей первой сессии (Вашингтон, 1961 г.) признала крайнюю необходимость в подготовке Руководства по гидрологической практике. В результате в 1965 г. было опубликовано первое издание Руководства по гидрометеорологической практике.

Второе и третье издания Руководства были опубликованы в 1970 и 1974 гг. соответственно. Третье издание носило название Руководство по гидрометеорологической практике в связи с пониманием более широких границ его содержания. Дальнейшие пересмотры и существенные дополнения к Руководству были одобрены на пятой сессии Комиссии (Оттава, 1976 г.), что сделало необходимым публикацию четвертого издания в двух томах. В первом томе рассматривались вопросы, связанные с получением и обработкой данных, а во втором вопросы анализа, прогнозирования и других прикладных аспектов. Том I и том II четвертого издания были соответственно опубликованы в 1981 и 1983 гг. В связи с развитием современных технологий, а также развитием гидрологии и деятельности ВМО, связанной с водными ресурсами, пятое издание было опубликовано в 1994 г. как единый сводный том. Руководство было также издано на компакт-диске для более эффективного распространения среди широкого круга экспертов в области рационального использования водных ресурсов, не входящих в традиционную для ВМО аудиторию.

В 1999 г. Всемирный метеорологический конгресс в качестве официального девиза Организации принял слова «Погода, климат и вода», а в 2000 г. Комиссия по гидрологии на своей седьмой сессии в Абудже (Нигерия) рекомендовала, чтобы шестое издание Руководства было размещено в виде "живого" документа в сети Интернет и обновлялось как можно чаще по мере возникновения необходимости.

1.2 Основные положения

В соответствии с принятыми принципами рационального использования водных ресурсов, для достижения устойчивости окружающей среды и экономической эффективности управление реками должно осуществляться на уровне водосбора. Сегодня, когда вода воспринимается как дело каждого, разнообразные заинтересованные лица как на национальном, так и на международном уровнях, участвуют и играют важную роль в решении связанных с водой вопросов. Многие учреждения и агентства внутри стран занимаются сбором гидрологических данных и информации. Эти данные могут собирать разнообразные агентства, используя различные методы измерения. Появляющаяся в результате неоднородность наблюдений приводит к снижению уверенности в качестве имеющихся данных. Поэтому крайне важно, чтобы все партнеры были знакомы с методами сбора гидрологических данных, существующими ограничениями и надежностью данных, и с тем, как они используются ответственными в бассейн организацией. Прозрачность в получении данных, их хранении и обмене — это наиболее важный элемент взаимодействия различных пользователей. Структура управления качеством для гидрометрии и гидрологической информации является основополагающим принципом для гидрологического информирования из различных источников.

Растущий спрос на пресную воду привлек внимание правительств и гражданского общества к важности совместного управления имеющимися ресурсами. Обмен преимуществами такого сотрудничества и даже предотвращение конфликтов базируются на всестороннем понимании принципов и механизмов достижения
ным гидрологическим службам, но и другим заинтересованным организациям.

Настоящее Руководство является составной частью обширной совокупности рекомендуемых видов практики и процедур, предусмотренных Техническим регламентом (ВМО-№ 49), том III — Гидрология, утвержденным ВМО. Странам — членам ВМО предлагается придерживаться рекомендуемых практик и процедур при организации своих гидрологических служб, а также в их деятельности.

1.3 СОДЕРЖАНИЕ РУКОВОДСТВА

Сложно провести четкую границу между гидрологией как наукой и практическим планированием и рациональным использованием водных ресурсов. Тем не менее, по практическим причинам было необходимо разделить это издание Руководства на два тома, как показано ниже (рисунок I.1.1).

В томе I, озаглавленном «Гидрология — от измерений до гидрологической информации», рассматриваются сети, приборы, методы наблюдений, первичная обработка данных и их хранение. Он содержит 10 глав, начиная с введения и описания содержания в главе 1.

В главе 2, под названием «Методы наблюдений», рассматривается вопросы проектирования и оценки эффективности сетей гидрологических наблюдений, и приводится обзор приборов и методов наблюдений различных элементов гидрологического режима, которые подробно описаны в следующих главах. Измерение осадков отражено в главе 3 во всех его аспектах, начиная с местонахождения осадкомеров и заканчивая наблюдениями за осадками с помощью дистанционного зондирования. В данной главе речь идет о жидких и о твердых осадках, включая их качество. В главе 4, «Испарение, суммарное испарение и влажность почвы», рассматриваются прямые и косвенные методы, а также дается краткий обзор методов уменьшения испарения.

В главе 5, «Количество поверхностных вод и измерение наносов», является основной. В ней рассматриваются измерение стока рек и емкости озер и водохранилищ. Там также говорится об измерении расхода наносов. Этот вопрос более подробно обсуждается в Manual on operational methods for the measurement of sediment transport (Наставление по оперативным методам измерения расхода наносов) (WMO-No. 686), к которому читателю предлагается обратиться за более подробной информацией.
В главе 6, которая озаглавлена «Подземные воды», рассматриваются вопросы, связанные с измерением уровня воды в колодцах и гидравлические свойства водоносных горизонтов. В ней также подробно представлены различные дистанционные методы наблюдений за грунтовыми водами.

Развитие водных ресурсов ограничивается не только их наличием, выраженным в количественных характеристиках, но и качеством. Соответственно, в главе 7 «Качество воды и водные экосистемы» рассматриваются ряд вопросов, начиная от методов отбора проб до дистанционного зондирования. В главе 8 «Условия соблюдения техники безопасности в гидрометрии» затрагивается весь спектр тем, начиная от безопасности персонала, проводящего наблюдения, заканчивая мерами безопасности на гидрометрических станциях с самописцами и защитой собранных проб.

И наконец, глава 9, «Обработка данных и контроль качества», и глава 10, «Хранение, доступ и распространение данных», повествуют о распространении данных для их использования специалистами, занимающимися водными проблемами.

В томе II рассматривается применение информации, о которой говорилось выше, по гидрологическому прогнозированию, планированию и проектированию
Глава 2 дает представление об управлении гидрологическими службами, включая все кадровые аспекты и управление финансами и активами. В главе 3 рассматривается комплексное управление водным хозяйством и подчеркивается важная роль качественных гидрологических данных при решении различных вопросов рационального использования водных ресурсов. В главе 4 освещены проблемы использования гидрологической информации в применении к управлению водным хозяйством, а именно при оценке емкости водохранилищ и водосброса, управлении наводнениями, орошении и осушении, в гидрометеорологических и других энергетических проектах, в судоходстве и регулировании речного русла, в управлении водными ресурсами на урбанизированных территориях, в задачах, связанных с переносом наносов и морфологией русел рек, а также проблемах окружающей среды. В главе 5 рассматриваются методы анализа экстремальных значений, а главы 6 и 7 посвящены, соответственно, моделированию гидрологических систем и гидрологическим прогнозам — двум ключевым функциям гидрологических служб в сфере управления водным хозяйством.

В то время как определенный уровень стандартизации в отношении приборов, методов наблюдений и публикации данных ожидается и может уже быть достигнут, дело с методами гидрологического анализа и другими приложениями обстоит значительно хуже. Поэтому в томе II сделан акцент на описание альтернативных подходов к решению различных задач, целесообразность и практичность которых проверена на практике. Следует обратить внимание на то, что задачей данного Руководства является, скорее, не рекомендация какого-либо предпочитительного метода, а рассмотрение основных свойств и достоинств каждого из подходов. Окончательный выбор метода зависит от большого числа факторов, включая особенности гидрологического и метеорологического режима, наличие исходных данных и информации, поставленные задачи, и может быть сделан только при ясном представлении конкретной ситуации. Всевозрастающее распространение в последние годы персональных компьютеров позволило ввести более точные методы анализа сложных гидрологических проблем. Некоторые из этих методов уже получили широкое применение на практике, они также включены в настоящее Руководство.

Полное описание теоретических основ рекомендуемых видов практики и детальное обсуждение способов их применения выходят за рамки данного Руководства. По этим вопросам читатель найдет в тексте ссылки на соответствующие наставления и технические отчеты ВМО, а также на другие пособия, справочные и технические наставления национальных агентств. В частности, более подробное руководство по приборам и методам наблюдений содержится в Руководстве по метеорологическим приборам и методам наблюдений (ВМО-№ 8) и в Руководстве по климатологической практике (ВМО-№ 100).

Списки литературы приводятся в конце каждой главы.

1.4 Гидрологическая оперативная многоцелевая система

В последние десятилетия в гидрологической науке и технике достигнут существенный прогресс, большой вклад в освоение и рациональное использование водных ресурсов был также сделан гидрологами-полевиками. Для того чтобы способствовать распространению гидрологических методов среди национальных гидрологических служб, ВМО разработала систему передачи технологий под названием Гидрологическая оперативная многоцелевая система (ГОМС). Эта система действует с 1981 г. и предусматривает простой, но эффективный способ широкого распространения испытанных методов для использования их гидрологами. В системе ГОМС гидрологические технологии передаются в виде отдельных компонентов. Эти компоненты могут принимать различную форму, например: наборы чертежей (или пособия с инструкциями) для конструирования гидрологических приборов, отчеты...
с описаниями разнообразных гидрологических процедур и компьютерные программы, производящие первичный контроль качества гидрологических данных, их обработку и хранение, а также моделирование и анализ обработанных данных. На сегодняшний день ГОМС включает свыше 180 компонентов, которые оперативно используются их создателями. Такой путь обеспечивает уверенность в том, что каждый компонент служит своей цели и проверен на практике. Описания этих компонентов приведены в Справочном наставлении по ГОМС, которое доступно на сайте http://www.wmo.int/pages/prog/hwrp/homs/homs_ru.html на английском, испанском, русском и французском языках. Настоящее Руководство в дальнейшем будет дополняться путем приведения перекрестных ссылок на соответствующие компоненты ГОМС, которые находятся в начале соответствующего раздела этого Руководства.

Ссылки и дополнительная литература

Всемирная Метеорологическая Организация, 1983 г.: Руководство по климатологической практике (ВМО-№ 100), второе издание, Женева.
Всемирная Метеорологическая Организация, 2006 г.: Технический регламент (ВМО-№ 49), том III — Гидрология, Женева.
Всемирная Метеорологическая Организация, 1994 г.: Руководство по гидрологической практике (ВМО-№ 168), пятое издание, Женева.
Всемирная Метеорологическая Организация, 1996 г.: Руководство по метеорологическим приборам и методам наблюдений (ВМО-№ 8), шестое издание, Женева.
Всемирная Метеорологическая Организация и Объединенные Нации по вопросам образования, науки и культуры, 1992 г.: Международный гидрологический словарь (ВМО-№ 385), Женева.
2.1 ВВЕДЕНИЕ — ГИДРОЛОГИЧЕСКИЙ ЦИКЛ КАК ОБЪЕКТ НАБЛЮДЕНИЙ

Вода присутствует на Земле в значительных количествах и находится во всех трех агрегатных состояниях: жидким, твердым и газообразным. Вода содержится в трех природных средах, одинаково доступных человеку: в атмосфере, морях и океанах, а также в массиве суши. Поскольку вода может легко проникать из одной среды в другую и переходить из одного агрегатного состояния в другое в соответствии со средой, в которой она оказывается, она сама является динамической средой, изменяющейся во времени и пространстве. Концепция гидрологического цикла включает в себя понятие о системе хранилищ воды на Земле, связанных между собой сетью водотоков (см. рисунок I.2.1). Гидрология как наука традиционно не занимается изучением всего гидрологического цикла, а ограничивается исследованием процессов гидрологического цикла, происходящих на суше, и их взаимодействием с океаном и атмосферой.

Поскольку большая часть жизнедеятельности человека протекает на поверхности суши, и поскольку вода, с одной стороны, необходима для поддержания жизни, а с другой — может проявлять себя силой, опасной для жизни человека, накопление гидрологических знаний имеет особое значение. Одним из традиционных методов их накопления является проведение измерений запасов и стока воды в определенных местах и в указанные сроки. Результатами наблюдений являются данные измерений. Их анализируют и обобщают. Таким образом, получают гидрологическую информацию и накапливают гидрологические знания. Том II настоящего Руководства посвящен гидрологическому анализу.

Для описания физической сути всего гидрологического цикла, а также систем, используемых для измерения его промежуточных элементов, применяются два основных уравнения. Этими уравнениями являются: а) уравнение неразрывности массы; и б) уравнение неразрывности энергии. Например, уравнение неразрывности массы может быть представлено в таком виде:

![Рисунок I.2.1. Гидрологический цикл](image-url)
Q = AV \quad (2.1)

Это уравнение может быть принято за основу при определении интенсивности стока в водотоке или канале. В этом уравнении \(Q \) — мгновенная интенсивность стока через поперечное сечение русла площадью \(A \) и средней скоростью течения \(V \). Обычно интенсивность стока, известную также как расход воды, нельзя измерить непосредственно в потоке, даже если он небольшой. С другой стороны, площадь поперечного сечения русла определяется посредством измерения элементарных поперечных сечений. Скорость потока измеряется гидрометрической вертушкой. Таким образом, с помощью уравнения (2.1), подробно описанного в главе 5, можно рассчитать расход воды даже самых крупных рек мира.

Другим примером роли уравнения неразрывности может служить его использование для расчета испарения воды с поверхности озер. В этом случае уравнение приобретает следующий вид:

\[P + I - O - E = \Delta S, \quad (2.2) \]

где \(P \) — это количество осадков, выпадающих на поверхность озера за период наблюдения; \(I \) — приток поверхностных и грунтовых вод за этот же период; \(O \) — расход вытекающих из озера поверхностных и грунтовых вод; \(E \) — количество воды, испарившейся с поверхности озера за наблюдаемый период; и \(\Delta S \) — изменение объема воды в озере за период наблюдения.

Методика измерения количества осадков описана в главе 3, притока и расхода — в главах 4, 5 и 6. Изменения объема воды в озере можно рассчитать по соотношению между уровнем и объемом воды в озере в начале и конце наблюдаемого периода. Методика измерения уровня воды обсуждается в главе 5. Таким образом, имея в результате наблюдений данные для четырех из пяти членов уравнения (2.2), оставшийся член — испарение — можно рассчитать математическим путем.

Систематические гидрологические наблюдения являются основой развития баз данных, получения информации и знаний, необходимых для рационального использования водных ресурсов. В этой главе обсуждается ряд основополагающих вопросов из области функционирования гидрологических и метеорологических систем наблюдения и производства гидрологической информации.

В частности, в этой главе дается обзор гидрологических стандартов и норм, точности измерений, концепции планирования сетей, методов наблюдений, измерение физико-географических характеристик, роли гидрологических данных в информационных службах и связей с устойчивым развитием. Некоторые из этих вопросов более подробно рассматриваются в этом томе ниже. Там, где было возможно, представлены перекрестные ссылки.

2.2 ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ОБЛАСТИ ВОДНЫХ РЕСУРСОВ

2.2.1 Потребность в данных и информации

Отчет Международной конференции по водным ресурсам и окружающей среде (МКВРОС), состоявшейся в Дублине в январе 1992 г. (United Nations, 1992a), дает всестороннюю оценку важности водных ресурсов для окружающей среды и мировой экономики. В сформулированных в отчете положениях четко определена роль, которую должны играть гидрологические службы в достижении целей, связанных с устойчивым развитием водного хозяйства. На конференции были рассмотрены следующие вопросы:

a) комплексное освоение и рациональное использование водных ресурсов;
b) оценка водных ресурсов и воздействие изменения климата на водные ресурсы;
c) охрана водных ресурсов, качества воды и водных экосистем;
d) водные ресурсы и устойчивое городское развитие, а также снабжение питьевой водой и санитария в городских условиях;
e) водные ресурсы для устойчивого производства промышленности и сельского развития, а также снабжение питьевой водой и санитария в сельских условиях;
f) механизмы осуществления и координации на глобальном, национальном, региональном и локальном уровнях.

В главе 3 тома II рассматривается развитие комплексного использования водных ресурсов, и приводятся примеры передовых методов в этой области. Трудно предвидеть, какая информация потребуется для удовлетворения тех нужд, которые связаны с комплексным использованием водных ресурсов в будущем. Лучшие идеи можно почерпнуть из рассмотрения последних тенденций в области управления водным хозяйством (раздел 2.2.4). Поскольку данные предназначены для руководителей водного хозяйства как в частных, так и правительственных агентствах, изменения подходов к управлению водным хозяйством будут менять требования, предъявляемые к данным и информации.

Последствия таких изменений могут быть следующие:

a) растущий спрос на воду приведет к удорожанию воды, что вызовет переоценку стоимости различных
товаров и услуг в пересчете на водный эквивалент — эти процессы в будущем во многих регионах могут быть усложнены за счет уменьшения количества и снижения качества имеющихся водных ресурсов;

b) экономическое давление приведет к более высокой плате за воду, повышению стоимости акций и местного финансирования программ по воде, что вызовет смещение акцентов с рабо́ты по развитию водного хозяйства к программам по защите окружающей среды и рациональному использованию водных ресурсов;

c) повышенное внимание будет уделяться сохранению воды и ее повторному использованию на всех стадиях развития проекта — в настоящее время в некоторых районах повторно используемая вода стоит меньше, чем свежая;

d) принятие законодательных актов, направленных на защиту окружающей среды приведет к сдерживанию тех потребителей, кто несет ответственность за загрязнение водных источников;

e) произойдет переориентация законов в сторону усиления ответственности руководителей водохозяйственных органов и потребителей воды за строгое обоснование своих потребностей, а также на усиление внимания по отношению к приоритетным направлениям водопользования (например, в отношении рыбы и диких животных) по сравнению с традиционными направлениями (например, сельское хозяйство и промышленность);

f) при региональном и бассейновом планировании водопользования особое внимание будет уделяться решению пограничных и спорных вопросов.

Эти направления говорят о том, что для управления водным хозяйством в будущем потребуется большая координация усилий по сбору данных. Управление водным хозяйством становится все более комплексным, интегрирующим дисциплины и специальности, и поэтому требуются взаимоувязавшие и согласованные результаты по количеству и качестве воды, подземных и поверхностных вод, отдельных бассейнов и регионах. Текущие проблемы, связанные с доступностью, совместимостью и надежностью таких данных, должны быть пересмотрены с учетом вышеуказанных обстоятельств. Кроме того, проблемы в области управления водным хозяйством тесно связаны с проблемами управления природными ресурсами и экологическими системами, поэтому к их решению все чаще необходимо применять целостный подход.

Поскольку многие потребители будут и в дальнейшем нуждаться в данных, необходимых для анализа и проектирования, то следует обратить повышенное внимание на потребность получения всесторонней региональной информации о поверхностных водах для решения различных вопросов (включая вопросы использования водных ресурсов) на всех стадиях развития проекта. В настоящем время в некоторых районах повторно используемая вода стоит меньше, чем свежая. Кроме того, проблема в области управления водным хозяйством становится все более комплексной, интегрирующей дисциплины и специальности, и поэтому требуются взаимоувязанные и согласованные результаты по количеству и качестве воды, подземных и поверхностных вод, отдельных бассейнов и регионах. Текущие проблемы, связанные с доступностью, совместимостью и надежностью таких данных, должны быть пересмотрены с учетом вышеуказанных обстоятельств. Кроме того, проблемы в области управления водным хозяйством тесно связаны с проблемами управления природными ресурсами и экологическими системами, поэтому к их решению все чаще необходимо применять целостный подход.

Гидрологические информационные системы

В этом томе Руководства сделан упор на полевые работы в области оперативной гидрологии. Однако данные, полученные в результате полевых работ, имеют какую-либо ценность только тогда, когда они быстро и надежно передаются их потенциальным потребителям. Для того чтобы обеспечить концептуальную основу разработки корректных подходов и гарантировать привильность и современность сбора и передачи информации, оперативную гидрологию внутри данной гидрологической службы можно рассматривать как некоторую информационную систему. На рисунке I.2.2 изображены элементы гидрологической информационной системы. Идеальный случай, когда в основе информационной системы лежит характерная последовательность действий и решений, которая начинается с изучения общей проблемы и в итоге позволяет внедрить принятые решения с максимальным положительным эффектом.

Гидрологическая информационная система в сочетании с набором численных моделей — физических, статистических, социально-экономических — составляет систему поддержки для принятия решений. С учетом требований к решению, разработчик информационной системы может точно определить методы анализа гидрологических данных. Методы анализа данных могут быть представлены в виде одной или нескольких моделей, которые отражают вероятностные, стохастические или детерминистические свойства рассматриваемого гидрологического явления. В этом томе II настоящего Руководства (в частности, в главах 5 и 7) рассматривается целик ряд технологий анализа данных.

На рисунке I.2.2 пунктирными стрелками показано, что стадия, на которой непосредственно начинается сбор данных, может быть изменена с исходным положением. Пределующие этапы стадии степени были определены на определенном уровне знаний об интересующих гидрологических условиях. По мере накопления данных этот уровень возрастает, вследствие чего может появиться необходимость в новых способах анализа данных и проектирования новых сетей наблюдений. Руководство по сбору данных представлено в разделе 2.5.

Из рисунка I.2.2 видно, что обеспечение качества является неотъемлемой частью информационной системы.
Она сопровождает все стадии, начиная с полевых работ до распространения данных и информации. Из-за широты этой проблемы рекомендации по обеспечению качества можно найти в различных разделах данного тома.

Рассмотрение информационной системы будет неполным без упоминания о системах управления информационными данными. Информация, содержащаяся в надежной системе управления данными, должна быть доступна не только изначально очерченному кругу потребителей, но и множеству других потребителей, интерес со стороны которых изначально было невозможно предвидеть. Однако надежность системы требует соответствующих затрат. Первая часть стоимости состоит в том, что широкий выбор возможностей, присущий надежной информационной системе, приводит к затруднениям в ее использовании, поскольку требует большей практической подготовки. Эта часть стоимости может быть снижена за счет создания систем, удобных для пользователя. Второй фактор возрастания стоимости — возможные потери информации, вызванные ее надежностью. Вследствие того, что система управления данными не может одновременно удовлетворять всем потребностям разнообразных потребителей, она вынуждена идти на компромисс, который обычно приводит к сокращению полноты данных и к потере некоторых их свойств. Для того чтобы уменьшить эти потери, в надежную центральную систему должны быть добавлены подсистемы, которые содержат...
2.2.3 Использование информации о водных ресурсах

Для систематического сбора, хранения и распространения данных о водных ресурсах, описанных в других разделах настоящего тома, в различных странах были организованы гидрологические и гидрометеорологические службы или соответствующие агентства. Их первостепенной задачей является обеспечение ответственных лиц, принимающих решения, информации о состоянии водных ресурсов. Такая информация может быть затребована для следующих целей (WMO/UNESCO, 1991):

а) оценки национальных водных ресурсов (их количества, качества, распределения во времени и пространстве), потенциала развития отраслей, связанных с водой, и возможности в обеспечении водой настоящих и будущих потребностей;

б) планирования, проектирования и эксплуатации водохозяйственных объектов;

в) оценки экологического, экономического и социального воздействия настоящих и предполагаемых практик по рациональному использованию водных ресурсов и планированию целесообразной стратегии освоения водных ресурсов;

g) обеспечение безопасности людей и их имущества при стихийных бедствиях, связанных с водой, особенно при наводнениях и засухах;

d) распределение воды между конкурирующими пользователями, находящимися как внутри страны, так и в различных странах;

e) соответствие нормативным требованиям.

Чаще всего информация о водных ресурсах собирается для какой-либо специальной цели, например для проектирования гидроэнергетических систем. Однако усилению конкуренции среди водопользователей при недостатке водных ресурсов требует того, чтобы водные ресурсы были использованы комплексно, так, чтобы взаимные требования различных проектов и водопользователей могли быть разрешимы. Это накладывает на поставщиков информации о водных ресурсах значительно большие обязательства, поскольку они должны одновременно предоставлять множество различных видов информации, и для различных пользователей она должна быть подготовлена в определенных формах. Поэтому необходимо, чтобы агентства, осуществляющие оценку водных ресурсов, понимали потребности всех водопользователей, а не только тех, с которыми они традиционно имеют дело. Еще более важным требованием является необходимость оценить все возможные потребности будущих пользователей таких данных до того, как эти потребности стали вполне определенными. Следовательно, необходимо, чтобы проектирование и совершенствование сетей по сбору соответствующих данных, особенно в отношении базовых станций, осуществлялось скоординированными усилиями по мониторингу различных элементов гидрологического цикла, которые могут быть доступны по минимальной цене многим потребителям, если задача компьютерной безопасности полностью решена, такие системы виртуальных данных обеспечивают эффективные и надежные средства доступа к данным и информации, необходимым для принятия решений.

Конечный продукт информационной системы получается в результате обработки данных по той же технологии, которая изначально рассматривалась в качестве базовой при проектировании сети наблюдений. Изображенная на рисунке последовательность достигает кульминации путем включения гидрологической информации в процесс принятия решений, для которого она предназначена, с тем чтобы получить оптимальный эффект. Ключ к достижению этого результата — согласованность между технологией принятия решений, методикой анализа данных и сетью наблюдений.

Хорошо спроектированной информационной сети свойственен синергизм, который возникает на трех этапах. Во-первых, информация — это товар, который не разрушается в процессе использования. Следовательно, при правильном хранении она может быть доступна по минимальной цене многим потребителям, наличие которых во время сбора данных не рассматривалось. Во-вторых, информация может быть использована для лучшего понимания гидрологических процессов, в результате чего возрастает информационное содержание как уже собранных данных, так и данных, которые будут получены в будущем. В-третьих, синергизм прогрессирует в результате внедрения новых методов и технологий по организации информационных систем, которые могут, подобно составляющим их данным, периодически выступать в качестве товара, пригодного для повторного использования.
рационального использования водных ресурсов, и представлены элементы передовой практики.

2.2.4 Виды информации о водных ресурсах

Разнообразие возможных потребностей в отношении информации о водных ресурсах определяет широкий диапазон видов данных. Общепринятый блок информации о водных ресурсах содержит статистические характеристики разнообразных метеорологических и гидрологических элементов. В числе этих элементов входят (WMO/UNESCO, 1991):

a) осадки, например дождь, снег, водный конденсат из тумана;
b) уровни и расходы рек, уровни озер и водохранилищ;
c) уровень подземных вод;
d) суммарное испарение;
e) концентрация наносов и твердых частиц в реках;
f) качество воды (бактериологическое, химическое и физическое) поверхностных и подземных источников.

В число статистических характеристик входят:
a) средние годовые, месячные или сезонные значения;
b) максимумы, минимумы и выборочные проценти;
c) характеристики изменчивости, например стандартное отклонение;
d) непрерывные записи, например гидрографа речного стока.

Необходимым требованием в отношении как исторических, так и текущих данных является обеспечение всего диапазона запросов, начиная со стадии планирования водохозяйственных мероприятий до реализации водохозяйственных проектов и систем противопаводковой защиты. При прогнозировании паводков или низкого стока (том II, глава 7) могут потребоваться

Таблица I.2.1. Гидрологическая информация, необходимая для водохозяйственных проектов

<table>
<thead>
<tr>
<th>Тип водохозяйственной деятельности</th>
<th>Уровень воды</th>
<th>Речной сток</th>
<th>Наносы</th>
<th>Качество воды*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>врем. ряд</td>
<td>макс.</td>
<td>мин.</td>
<td>врем. ряд</td>
</tr>
<tr>
<td>Перераспределение воды по территории (сбросы, изъятия, каналы)</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Перераспределение воды во времени (водохранилища)</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Производство энергии (гидроэнергетика, сброс подогретых вод)</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Водоудерживающие, сооружения (дамбы, дамбы обвала)</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Водосборные устройства (водосливы)</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Улучшение качества воды (очистка природных и сточных вод)</td>
<td>H</td>
<td>M</td>
<td>N</td>
<td>M</td>
</tr>
<tr>
<td>Зонирование (поймы, живописные реки)</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Страхование (ущерб от наводнений, ущерб от загрязнения)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Прогнозы стока и уровня (контроль за паводками, эксплуатация водохранилищ)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Стандарты и законодательство (качество воды)</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
</tr>
</tbody>
</table>

* Параметры качества различаются в зависимости от типа проекта.
H = высокий уровень приоритета; M = средний уровень приоритета.
Глава 2. Методы наблюдений

Это подразумевает, что гидрологические службы и другие соответствующие агентства могут быть привлечены для накопления и архивации широкого спектра данных и информации, имеющих отношение к водным ресурсам. Различные страны имеют разные приоритеты в отношении такой информации, которая зависит от уровня их экономического и социального развития, чувствительности природной среды к вмешательству человеческой деятельности, а также характера самой окружающей среды, т. е. климата, рельефа, обилия или, наоборот, дефицита воды.

Ниже представлены основополагающие требования для эффективного выполнения программы по оценке водных ресурсов:

a) для выполнения надежного статистического анализа необходимо собирать высококачественные данные;
b) данные и информация, полученная с их помощью, должны точно соответствовать требованиям пользователей;
c) для достижения максимально возможной ценности собираемых данных необходимы комплексные программы наблюдений, предусматривающие одновременные измерения нескольких переменных;
d) должны использоваться и другие виды информации, которые имеют отношение к оценке водных ресурсов и могут быть использованы при анализе;
e) должна применяться эффективная система хранения и распространения данных, чтобы обеспечить их сохранность и целостность, а также возможность их использования в той форме, которая требуется для выполнения анализа (глава 10).

Вышеперечисленные требования могут быть выполнены с помощью новых технологий, например телеметрии, которые позволяют получать данные в режиме реального времени путем использования совместимых с поисковыми системами компьютерных баз данных, методов дистанционного зондирования для более эффективного сбора пространственной информации, а также Географических информационных систем (ГИС) (раздел 2.6.7) для анализа пространственно распределенных данных. Кроме того, новые компьютерные устройства хранения данных и использование сети Интернет позволяют быстрее считывать данные. Однако применение новых технологий — не единственное требование. Еще более важным требованием является наличие хорошо обученного и управляемого персонала. Поскольку финансовые ресурсы во многих странах продолжают сокращаться, наличие эффективных организационных структур, позволяющих использовать эти ресурсы более разумно, становятся все более важным требованием.

Помимо необходимости выполнения обще принятых измерений, все более возрастает признание потребности в измерении дополнительных характеристик пресноводных систем и более крупных экологических структур, в которых пресная вода является только одним из компонентов. В качестве дополнительных характеристик можно привести следующие:

a) объемы воды, необходимые для промышленного, бытового и сельскохозяйственного использования, а также для судоходства. Эти виды антропогенной деятельности в настоящее время значительно видоизменяют гидрологический цикл во многих бассейнах;
b) особые характеристики рек и необходимых объемов воды для конкретного вида водопользования, например пресноводного рыболовства или рекреации;
c) характеристики водосбора, которые могут иметь отношение к гидрологическому режиму водных объектов, например характеристики растительности, влажность почвы, топография, а также характеристики водоносных горизонтов;
d) показатели экологического состояния, например эвтрофикация озер и данные об ухудшении пресноводных и эстuarных экосистем.

2.3 Гидрологические условные обозначения, коды и точность измерений

2.3.1 Единицы измерения и обозначения

Стандартизация единиц измерения и обозначений весьма желательна, и она может быть достигнута при использовании единиц измерения и обозначений, рекомендованных в таблицах I.2.2–I.2.4 (ISO, 1993 г.), где также приводятся широко используемые однозначные и двузначные коэффициенты. Все условные обозначения и единицы измерения, используемые в данном Руководстве, совпадают с приведенными в таблицах.
<table>
<thead>
<tr>
<th>Пункт</th>
<th>Элемент</th>
<th>Условное обозначение</th>
<th>Единицы измерения</th>
<th>Рекомендуемые переводные коэффициенты</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ускорение вследствие силы тяжести</td>
<td>г</td>
<td>м/с²</td>
<td>0,305</td>
<td>ИСО</td>
</tr>
<tr>
<td>2</td>
<td>Альбедо</td>
<td>r</td>
<td>Выражается десятичным числом</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Площадь (поперечного сечения) (водосбора)</td>
<td>A</td>
<td>м²</td>
<td>0,0929</td>
<td>ИСО</td>
</tr>
<tr>
<td>4</td>
<td>Химическое качество</td>
<td></td>
<td>мг·л⁻¹</td>
<td>0,0929</td>
<td>ИСО</td>
</tr>
<tr>
<td>5</td>
<td>Коэффициент Чези [ν (SA)⁻¹/²]</td>
<td>C</td>
<td>м¹²·с⁻¹</td>
<td>0,552</td>
<td>ИСО</td>
</tr>
<tr>
<td>6</td>
<td>Пропускная способность</td>
<td>K</td>
<td>м³·с⁻¹</td>
<td>0,0283</td>
<td>ИСО</td>
</tr>
<tr>
<td>7</td>
<td>Градусо-день</td>
<td>D</td>
<td>Градусо-день</td>
<td>Формула перевода: (°C = \frac{5}{9}(°F – 32))</td>
<td>Кол. IV — по шкале Цельсия, кол. V — по шкале Фаренгейта</td>
</tr>
<tr>
<td>8</td>
<td>Плотность</td>
<td>p</td>
<td>кг·м⁻³</td>
<td>16,0185</td>
<td>ИСО</td>
</tr>
<tr>
<td>9</td>
<td>Глубина, диаметр, толщина</td>
<td>D</td>
<td>см</td>
<td>2,54</td>
<td>ИСО</td>
</tr>
<tr>
<td>10</td>
<td>Расход (речного стока) (колодцев)</td>
<td>Q</td>
<td>л·с⁻¹</td>
<td>0,0283</td>
<td>ИСО</td>
</tr>
<tr>
<td></td>
<td>(модуль стока — Q A⁻¹, или частичный)</td>
<td>q</td>
<td>л³·с⁻¹·км⁻²</td>
<td>0,0109</td>
<td>ИСО</td>
</tr>
<tr>
<td>11</td>
<td>Откачка</td>
<td>s</td>
<td>см</td>
<td>30,5</td>
<td>ИСО</td>
</tr>
<tr>
<td>12</td>
<td>Динамическая вязкость (абсолютная)</td>
<td>η</td>
<td>Н·с·м⁻²</td>
<td>ИСО, также используется Па, с, кг·с⁻¹·м⁻¹</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Испарение</td>
<td>E</td>
<td>мм</td>
<td>25,4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Суммарное испарение</td>
<td>ET</td>
<td>мм</td>
<td>25,4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Число Фруда</td>
<td>Fr</td>
<td>Безразмерное число</td>
<td>ИСО</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Напор как высота</td>
<td>z</td>
<td>м</td>
<td>0,305</td>
<td>ИСО</td>
</tr>
<tr>
<td>17</td>
<td>Напор как давление</td>
<td>h</td>
<td>м</td>
<td>10,00/7,05</td>
<td>ИСО</td>
</tr>
<tr>
<td>18</td>
<td>Напор гидростатический (уровень воды) = z + h₀</td>
<td>h</td>
<td>см</td>
<td>30,05</td>
<td>ИСО</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Напор полный = z + h₀ + h_v</td>
<td>H</td>
<td>м</td>
<td>0,305</td>
<td>ИСО</td>
</tr>
<tr>
<td>20</td>
<td>Напор скоростной = (\sqrt{(2g)})</td>
<td>h_v</td>
<td>см</td>
<td>30,05</td>
<td>ИСО</td>
</tr>
</tbody>
</table>

Таблица I.2.2. Рекомендуемые обозначения, единицы измерения и переводные коэффициенты
<table>
<thead>
<tr>
<th>Пункт</th>
<th>Элемент</th>
<th>Условное обозначение</th>
<th>Единицы измерения</th>
<th>Рекомендуемые переводной коэффициент*</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Гидравлическая проницаемость (водопроницаемость)</td>
<td>K</td>
<td>см·с⁻¹, m d⁻¹, ft min⁻¹</td>
<td>0,00116, 0,508</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Гидравлическая диффузивность = (\Gamma C_s^{-1})</td>
<td>D</td>
<td>см²·с⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Гидравлический радиус = (A P_w^{-1})</td>
<td>(R_h)</td>
<td>м, ft</td>
<td>0,305</td>
<td>ИСО</td>
</tr>
<tr>
<td>24</td>
<td>Толщина льда</td>
<td>(d_g)</td>
<td>см, in</td>
<td>2,54</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Инфильтрация</td>
<td>(f)</td>
<td>мм, in</td>
<td>25,4</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Скорость инфильтрации</td>
<td>(I_f)</td>
<td>мм·ч⁻¹, in h⁻¹</td>
<td>25,4</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Истинная водопроницаемость</td>
<td>(k)</td>
<td>10⁻⁶ см² Darcy</td>
<td>0,987</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Кинематическая вязкость</td>
<td>(\nu)</td>
<td>м²·с⁻¹, ft² s⁻¹</td>
<td>0,0929</td>
<td>ИСО</td>
</tr>
<tr>
<td>29</td>
<td>Длина</td>
<td>(l)</td>
<td>см, in</td>
<td>2,54</td>
<td>ИСО</td>
</tr>
<tr>
<td></td>
<td></td>
<td>м, ft</td>
<td>0,305</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>км, mile</td>
<td>1,609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Коэффициент Маннинга = (R_h^{1/3} S^{1/2} \nu^{-1})</td>
<td>(n)</td>
<td>см⁻¹³, s ft⁻¹³</td>
<td>1,486</td>
<td>ИСО, (l/n = k), также может использоваться коэффициент шероховатости</td>
</tr>
<tr>
<td>31</td>
<td>Масса</td>
<td>(m)</td>
<td>кг, lb</td>
<td>0,454, 28,35</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Пористость</td>
<td>(n)</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Осадки</td>
<td>(P)</td>
<td>мм, in</td>
<td>25,4</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Интенсивность осадков</td>
<td>(I_p)</td>
<td>мм·ч⁻¹, in h⁻¹</td>
<td>25,4</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Атмосферное давление</td>
<td>(p)</td>
<td>Па, hPa, mm Hg, in Hg</td>
<td>100,0, 133,3, 3386,0</td>
<td>См. пункт 17</td>
</tr>
<tr>
<td>36</td>
<td>Радиация** (количество энергии излучения на единицу площади)</td>
<td>(R)</td>
<td>Дж·м⁻²</td>
<td>4,187 х 10⁴</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Интенсивность радиации** (поток на единицу площади)</td>
<td>(I_R)</td>
<td>Дж·м⁻²·с⁻¹, ly min⁻¹</td>
<td>697,6</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Радиус влияния</td>
<td>(r_2)</td>
<td>м, ft</td>
<td>0,305</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Коэффициент истощения</td>
<td>(C_r)</td>
<td></td>
<td>Выражается десятичным числом</td>
<td></td>
</tr>
</tbody>
</table>
Таблица I.2.2 (продолж.)

<table>
<thead>
<tr>
<th>Пункт</th>
<th>Элемент</th>
<th>Условное обозначение</th>
<th>Единицы измерения</th>
<th>Рекомендуемые переводной коэффициент*</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Относительная влажность (влажность)</td>
<td>U</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Число Рейнольдса</td>
<td>R<sub>p</sub></td>
<td>Безразмерное число</td>
<td>ИСО</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Сток</td>
<td>R</td>
<td>мм</td>
<td>in</td>
<td>25,4</td>
</tr>
<tr>
<td>43</td>
<td>Концентрация наносов</td>
<td>c<sub>n</sub></td>
<td>кг·м<sup>-3</sup></td>
<td>ppm</td>
<td>Зависит от плотности</td>
</tr>
<tr>
<td>44</td>
<td>Расход наносов</td>
<td>Q<sub>n</sub></td>
<td>т·сут<sup>-1</sup></td>
<td>ton (US) d<sup>-1</sup></td>
<td>0,907</td>
</tr>
<tr>
<td>45</td>
<td>Касательное напряжение</td>
<td>t</td>
<td>Па</td>
<td></td>
<td>ИСО</td>
</tr>
<tr>
<td>46</td>
<td>Уклон (гидролечький, бассейна)</td>
<td>S</td>
<td>Безразмерное число</td>
<td>ИСО</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Снежный покров</td>
<td>A<sub>n</sub></td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Высота снежного покрова</td>
<td>d<sub>n</sub></td>
<td>см</td>
<td>in</td>
<td>2,54</td>
</tr>
<tr>
<td>49</td>
<td>Снеготаяние</td>
<td>M</td>
<td>мм</td>
<td>in</td>
<td>25,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Влажность почвы</td>
<td>U<sub>s</sub></td>
<td>% от объема</td>
<td>% от массы</td>
<td>Зависит от плотности</td>
</tr>
<tr>
<td>51</td>
<td>Дефицит влажности почвы</td>
<td>U's</td>
<td>мм</td>
<td>in</td>
<td>25,4</td>
</tr>
<tr>
<td>52</td>
<td>Удельная емкость = Q<sub>во</sub>/t<sup>-1</sup></td>
<td>C<sub>s</sub></td>
<td>м<sup>2</sup>·с<sup>-1</sup></td>
<td>ft<sup>2</sup>·s<sup>-1</sup></td>
<td>0,0929</td>
</tr>
<tr>
<td>53</td>
<td>Удельная проводимость</td>
<td>K</td>
<td>мкСм·см<sup>-1</sup></td>
<td></td>
<td>при θ = 25 °C</td>
</tr>
<tr>
<td>54</td>
<td>Удельная водоотдача</td>
<td>Y<sub>s</sub></td>
<td>Выражается десятичным числом</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Запас</td>
<td>S</td>
<td>м<sup>3</sup></td>
<td>ft<sup>3</sup></td>
<td>0,0283</td>
</tr>
<tr>
<td>56</td>
<td>Коэффициент водоотдачи (грунтовые воды)</td>
<td>C<sub>ys</sub></td>
<td>Выражается десятичными числом</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Продолжительность солнечного сияния</td>
<td>n/N</td>
<td>Выражается десятичными числам</td>
<td>Фактические (n)/возможные (N)</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Поверхностное натяжение</td>
<td>σ</td>
<td>Н·м<sup>-1</sup></td>
<td></td>
<td>ИСО</td>
</tr>
<tr>
<td>59</td>
<td>Температура</td>
<td>θ</td>
<td>°C</td>
<td>°F</td>
<td>Формула перевода °C = 5/9 (*F – 32)</td>
</tr>
<tr>
<td>60</td>
<td>Общее количество растворенных веществ</td>
<td>m<sub>d</sub></td>
<td>мг·л<sup>-1</sup></td>
<td>ppm</td>
<td>– 1</td>
</tr>
<tr>
<td>61</td>
<td>Водопроводная способность</td>
<td>T</td>
<td>м<sup>2</sup>·сут<sup>-1</sup></td>
<td>ft<sup>2</sup>·d<sup>-1</sup></td>
<td>0,0929</td>
</tr>
<tr>
<td>62</td>
<td>Упругость водяного пара</td>
<td>ε</td>
<td>Па</td>
<td>hPa</td>
<td>100,0</td>
</tr>
</tbody>
</table>

*Также используется обозначение t для разбавленных растворов.
Таблица I.2.2 (продолж.)

<table>
<thead>
<tr>
<th>Пункт</th>
<th>Элемент</th>
<th>Условное обозначение</th>
<th>Единицы измерения</th>
<th>Переводной коэффициент*</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Рекомендуемые</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Также употребляемые</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Скорость (воды)</td>
<td>v</td>
<td>m·s$^{-1}$</td>
<td>ft s$^{-1}$</td>
<td>0,305</td>
</tr>
<tr>
<td>64</td>
<td>Объем</td>
<td>V</td>
<td>м3</td>
<td>ft3</td>
<td>acre ft</td>
</tr>
<tr>
<td>65</td>
<td>Водный эквивалент снега</td>
<td>w_e</td>
<td>мм</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Число Вебера</td>
<td>W_e</td>
<td>Безразмерное число</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Смоченный периметр</td>
<td>P_w</td>
<td>м</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Ширина (поперечного сечения бассейна)</td>
<td>b</td>
<td>м</td>
<td>ft</td>
<td>mile</td>
</tr>
<tr>
<td>69</td>
<td>Скорость ветра</td>
<td>u</td>
<td>m·s$^{-1}$</td>
<td>km h$^{-1}$</td>
<td>mile h$^{-1}$</td>
</tr>
<tr>
<td>70</td>
<td>Радиоактивность (суммарная радиоактивность)</td>
<td>A</td>
<td>Бк (Беккерель)</td>
<td>Ci (Кюри)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Поток излучения (или поток энергии)</td>
<td>F</td>
<td>Дж·м$^{-2}$</td>
<td>erg cm$^{-2}$</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Интенсивность потока излучения (или интенсивность потока энергии)</td>
<td>I</td>
<td>Дж·м$^{-2}$·с$^{-1}$</td>
<td>erg cm$^{-2}$·с$^{-1}$</td>
<td></td>
</tr>
</tbody>
</table>

Примечание. Тем, где имеются международные обозначения, они используются в случае необходимости и оговариваются как ИСО в последней колонке.

* Кiol. IV = переводной коэффициент (кол. IV) х кол. V.

** Общие термины: подробную терминологию и условные обозначения смотри, например, в Руководстве ВМО по метеорологическим приборам и методам наблюдений (ВМО-№ 8).

Таблица I.2.3. Различные обозначения

<table>
<thead>
<tr>
<th>Пункт</th>
<th>Элемент</th>
<th>Условное обозначение</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Концентрация</td>
<td>c</td>
<td>ИСО</td>
</tr>
<tr>
<td>2</td>
<td>Коэффициент (вобще)</td>
<td>C</td>
<td>ИСО</td>
</tr>
<tr>
<td>3</td>
<td>Разность</td>
<td>Δt</td>
<td>ИСО, величины выражаются в одних и тех же единицах</td>
</tr>
<tr>
<td>4</td>
<td>Приток</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Запаздывание</td>
<td>Δt</td>
<td>Различные величины</td>
</tr>
<tr>
<td>6</td>
<td>Наносы</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Число (или разряд)</td>
<td>m</td>
<td>ИСО</td>
</tr>
<tr>
<td>8</td>
<td>Отток</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Пополнение</td>
<td>f</td>
<td>(См. пункт 25 в таблице I.2.2)</td>
</tr>
<tr>
<td>10</td>
<td>Общее число</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>
Таблица I.2.4. Единицы, используемые в таблице I.2.2

<table>
<thead>
<tr>
<th>Пункт</th>
<th>Элемент</th>
<th>Условное обозначение</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Сантиметр</td>
<td>см</td>
<td>ИСО</td>
</tr>
<tr>
<td>2</td>
<td>Сутки</td>
<td>сут</td>
<td>ИСО</td>
</tr>
<tr>
<td>3</td>
<td>Градусы Цельсия</td>
<td>°C</td>
<td>ИСО</td>
</tr>
<tr>
<td>4</td>
<td>Грамм</td>
<td>г</td>
<td>ИСО</td>
</tr>
<tr>
<td>5</td>
<td>Гектар</td>
<td>га</td>
<td>ИСО</td>
</tr>
<tr>
<td>6</td>
<td>Гектопаскаль</td>
<td>гПа</td>
<td>ИСО</td>
</tr>
<tr>
<td>7</td>
<td>Час</td>
<td>ч</td>
<td>ИСО</td>
</tr>
<tr>
<td>8</td>
<td>Джоуль</td>
<td>Дж</td>
<td>ИСО</td>
</tr>
<tr>
<td>9</td>
<td>Килограмм</td>
<td>кг</td>
<td>ИСО</td>
</tr>
<tr>
<td>10</td>
<td>Километр</td>
<td>км</td>
<td>ИСО</td>
</tr>
<tr>
<td>11</td>
<td>Узел</td>
<td>узел</td>
<td>ИСО</td>
</tr>
<tr>
<td>12</td>
<td>Литр</td>
<td>л</td>
<td>ИСО</td>
</tr>
<tr>
<td>13</td>
<td>Метр</td>
<td>м</td>
<td>ИСО</td>
</tr>
<tr>
<td>14</td>
<td>Микросиенс</td>
<td>мкСм</td>
<td>ИСО</td>
</tr>
<tr>
<td>15</td>
<td>Миллиграмм</td>
<td>мг</td>
<td>ИСО</td>
</tr>
<tr>
<td>16</td>
<td>Миллиметр</td>
<td>мм</td>
<td>ИСО</td>
</tr>
<tr>
<td>17</td>
<td>Минута</td>
<td>мин</td>
<td>ИСО</td>
</tr>
<tr>
<td>18</td>
<td>Ньютон</td>
<td>Н</td>
<td>ИСО</td>
</tr>
<tr>
<td>19</td>
<td>Милионная доля</td>
<td>млн⁻¹</td>
<td>ИСО</td>
</tr>
<tr>
<td>20</td>
<td>Паскаль</td>
<td>Па</td>
<td>ИСО</td>
</tr>
<tr>
<td>21</td>
<td>Процент</td>
<td>%</td>
<td>ИСО</td>
</tr>
<tr>
<td>22</td>
<td>Секунда</td>
<td>с</td>
<td>ИСО</td>
</tr>
<tr>
<td>23</td>
<td>Тонна (метр, тонна)</td>
<td>т</td>
<td>ИСО</td>
</tr>
<tr>
<td>24</td>
<td>Год</td>
<td>год</td>
<td>ИСО</td>
</tr>
<tr>
<td>25</td>
<td>Беккерель</td>
<td>Бк</td>
<td>МАГАТЭ</td>
</tr>
</tbody>
</table>

2.3.2 Гидрологические коды

2.3.2.1 Общие положения

Во всех системах передачи информации используют какой-либо из способов кодирования с целью обеспечения быстрой и надежной передачи информации (раздел 9.3). В полностью автоматизированных системах информация обязательно переводится в кодированный вид до обработки. Поэтому коды составляются из стандартных форм, которые позволяют передавать информацию и представлять ее в виде, пригодном для обработки. Перед обработкой обычно выполняется контроль качества (раздел 9.8).

Структура международных кодов и сами коды разрабатывались по общему соглашению коллективными усилиями. В течение долгого времени в ВМО создавались коды, отвечающие всем требованиям обмена meteorологическими данными.

Поскольку в оперативной гидрологии обмен информацией осуществляется не в глобальном масштабе, то применяется множество различных кодов. Такое положение привело к тому, что Комиссия ВМО по гидрологии разработала международные гидрологические коды. Они предназначены для удовлетворения наиболее общих требований. По возможности осуществляется стандартизация методов кодирования и сбора гидрологических данных. Коды HYDRA и HYFOR, которые были разработаны и использовались ранее, больше не рекомендованы к использованию. Вместо них в последние годы была разработана символьная форма для представления данных и обмена ими (CREX) для представления и передачи гидрометеорологических данных.

Этот код особенно полезен при сборе и обработке данных по крупным национальным и международным речным бассейнам, когда в центре обработки данных собираются сведения по большому числу станций.
2.3.2.2 Символьная форма для представления данных и обмена ими

CREX — название символьного кода для представления метеорологических, гидрологических данных и данных о качестве воды и обмена ими. Хотя он изначально был создан для обмена данными, для которых не существует какой-либо подходящей кодовой формы ВМО, CREX с недавнего времени используется как стандартная кодовая форма для передачи данных с платформ сбора данных (ПСД). Сообщение CREX состоит из одного или более поднаборов соответствующих метеорологических данных, определяемых, описываемых и представляемых с помощью единственного объекта CREX. Для данных наблюдений каждый поднабор данных соответствует одной сводке. CREX использует многие принципы предыдущего кода BUFR; каждое сообщение CREX состоит из следующих разделов:

<table>
<thead>
<tr>
<th>Номер раздела</th>
<th>Название</th>
<th>Содержание раздела</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Раздел указателя</td>
<td>CREX</td>
</tr>
<tr>
<td>1</td>
<td>Раздел описания сетки для CREX</td>
<td>Номер эталонной таблицы CREX, номер издания, номер варианта таблицы, категория данных, затем набор дескрипторов, которые определяют форму и содержание поднаборов данных, составляющих раздел данных, и необязательный проверочный цифровой индикатор E</td>
</tr>
<tr>
<td>2</td>
<td>Раздел данных</td>
<td>Набор элементов данных, определенных в разделе 1</td>
</tr>
<tr>
<td>3</td>
<td>Необязательный раздел</td>
<td>SUPP с последующими дополнительными элементами для местного использования</td>
</tr>
<tr>
<td>4</td>
<td>Конечный раздел</td>
<td>7777</td>
</tr>
</tbody>
</table>

2.3.3 Точность гидрологических измерений

2.3.3.1 Основные принципы

Теоретически нельзя определить при помощи измерений истинные значения гидрологических элементов, из-за возникающих при измерениях ошибок, которые не могут быть полностью исключены. Неопределённость результатов измерений имеет вероятностный характер, который можно рассматривать в виде доверительной вероятности или интервала, в котором с определённой вероятностью может находиться истинное действительное значение некоторой величины. Ширина доверительного интервала также называется полосой ошибок.

Если измерения независимы друг от друга, то неопределенность результатов измерений можно оценить, рассматривая не менее 20–25 наблюдений и вычисляя результирующее стандартное отклонение, и затем определяя доверительный уровень результатов измерений. Эту процедуру обычно нельзя использовать при гидрометрических измерениях, так как значение измеряемой величины может меняться за время измерения. Например, в полевых условиях трудно осуществить большое количество измерений расхода вертушкой при постоянном уровне воды. Поэтому оценку неопределенности следует проводить путем изучения различных источников ошибок при выполнении измерений.

Другая проблема применения статистических методов по отношению к гидрологическим данным возникает из-за допущения, что наблюдения являются случайно-независимыми переменными с определённым статистическим распределением. Это условие редко встречается на практике при гидрологических измерениях. Речной сток по своему характеру не является полностью случайным явлением и зависит от предшествующих значений. Обычно допускается, что некоторое отклонение гидрологических данных от теории ошибок не является столь существенным. Однако следует отметить, что статистический анализ не может заменить точные наблюдения, особенно из-за ложных и систематических ошибок, которые нельзя исключить с его помощью. Статистическими методами можно характеризовать только случайные ошибки.

В разделе 2.3.3 содержатся определения основных терминов, связанных с точностью гидрологических измерений, а также представлены методы оценки неопределенности и числовые значения требуемой точности для большинства важных гидрологических параметров. В нем также приводятся ссылки на существующие рекомендации, которые содержатся в Техническом регламенте (ВМО-№ 49) и других публикациях.

2.3.3.2 Определения терминов, связанных с точностью измерений

Приведенные ниже определения терминов, относящихся к точности измерений, даны с учетом Технического регламента (ВМО-№ 49), том III — Гидрология, и Руководства по метеорологическим приборам и методам наблюдений (ВМО-№ 8):

Воспроизводимость. Степень согласия между результатами измерения одного и того же значения некоторой величины, полученными в разных условиях, т. е.
разными наблюдателями, приборами, при различном местоположении и после значительных по величине временных интервалов, при которых разность измерений, обусловленная погрешностью, незначительна.

Гистерезис (прибор). Такое свойство прибора, в результате которого получаются различные результаты измерений при одном и том же фактическом значении, в зависимости от того, каким путем непрерывного увеличения или непрерывного уменьшения — достигается это значение.

Диапазон. Интервал между максимальным и минимальным значениями величины, для которого прибор был сконструирован, отрегулирован или установлен. Он может быть выражен в виде соотношения максимального и минимального значений измеряемой величины.

Доверительная вероятность. Вероятность нахождения истинной величины в доверительном интервале (рисунки I.2.3 и I.2.4).

Доверительный интервал. Интервал, который включает истинную величину с предписанной вероятностью и который оценивается как функция статистических характеристик выборки (рисунки I.2.3 и I.2.4).

Допуск. Допустимое отклонение при измерении определенной переменной.

Измерение. Действие, предполагающее определение числа как величины физического количества, выраженного в установленных единицах. Сведения о результате измерения не являются полными, если не приведены (обязательно в терминах статистики) данные о возможной величине неопределенности.

Истинная величина. Величина, которая принимается для характеристики количества при условии, которое существует на момент, при котором это количество наблюдается. Это идеальная величина, которая может быть известна только в случаях устранения всех причин ошибок.

Ложная ошибка. Величина, наверняка известная как ошибочная, например в результате ошибок человека или неправильной работы прибора (рисунок I.2.3).

Неопределенность. Интервал, в котором может с заданной вероятностью находиться действительное значение некоторой величины (рисунок I.2.3). Числовое значение неопределенности является произведением истинного стандартного отклонения ошибок и числового параметра, зависящего от доверительного уровня:

\[e = \pm \alpha \sigma_y \approx \alpha s_y \] (2.3)

Средняя измеренная величина количества

Точная величина количества

Систематическая ошибка

Случайная ошибка

Случайная неопределенность

Средняя неопределенность

Плотность вероятности

Время

Доверительный интервал 2 \(\alpha s_y \)

Время, в течение которого определяется постоянная величина \(Y \) количества

Рисунок I.2.3. Объяснение ошибок
Глава 2. Методы наблюдений

В случае нормального распределения ошибок, числовые параметры равны:

<table>
<thead>
<tr>
<th>Доверительный уровень</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,50</td>
<td>0,674</td>
</tr>
<tr>
<td>0,60</td>
<td>0,842</td>
</tr>
<tr>
<td>0,66</td>
<td>0,954</td>
</tr>
<tr>
<td>0,80</td>
<td>1,282</td>
</tr>
<tr>
<td>0,90</td>
<td>1,645</td>
</tr>
<tr>
<td>0,95</td>
<td>1,960</td>
</tr>
<tr>
<td>0,98</td>
<td>2,326</td>
</tr>
<tr>
<td>0,99</td>
<td>2,576</td>
</tr>
<tr>
<td>0,999</td>
<td>3,291</td>
</tr>
</tbody>
</table>

Нормальное распределение (Распределение Гаусса). Математически определенное симметричное, колоколообразное, непрерывное распределение, традиционно принимаемое как представляющее распределение случайных ошибок.

Ожидаемое значение. Лучшая аппроксимация истинной величины, которая может быть средним значением нескольких или многих измерений.

Ошибка. Разность между результатом измерения и действительным значением измеряемой величины. Этот термин применяется также для обозначения разности между результатом измерения и наилучшей аппроксимацией для действительного значения (а не собственно действительным значением). Напомним приближением может быть среднее значение из результатов нескольких или достаточно многих измерений.

Повторяемость. Степень сходства, при наличии случайных ошибок, между результатами измерения одного и того же значения некоторой величины, полученными в одних и тех же условиях, т. е. один и тем же наблюдателем, использующим один и тот же прибор в том же самом месте, и, кроме того, в пределах достаточно коротких временных интервалов, исключающих возможность появления реальных расхождений.

Поправка. Величина, которая должна быть добавлена к результату измерения так, чтобы учесть все известные ошибки, и таким образом максимально приблизиться к действительному значению.

Пределное допустимое отклонение. Ограниченное нижнее или верхнее значение, определенное для количественной характеристики.

Прецизионность. Степень сходства результатов измерения одной и той же величины с помощью заданной процедуры измерения в одних и тех же условиях. Точность означает степень близости с истинной величиной, а прецизионность означает только близость между результатами измерения; кроме того, прецизионность считаемого результата наблюдений это цена деления измерения, выполняемого или непосредственно, или путем расчета.

Разрешающая способность. Наименьшее изменение физической переменной, которое может вызвать изменение в отклике измерительной системы.
Систематическая ошибка. Та часть ошибки, которая:
а) остается постоянной в результате ряда измерений одного и того же значения данной величины; или
б) изменяется в соответствии с определенным законом при изменении условий (рисунок I.2.3).

Случайная ошибка. Та часть ошибки, величина и знак которой непредсказуемо изменяются при измерении одного и того же значения заданной величины при одинаковых условиях (рисунок I.2.3).

Стандартная ошибка расчета \((S_e) \). Мера рассеяния или разброса наблюдений относительно регрессионной прямой. В цифровом отношении она аналогична стандартному отклонению, за исключением тех случаев, когда отношение линейной регрессии заменяет среднеарифметическое и \((n-1) \) заменяется \((n-m) \):

\[
S_e = \left(\frac{\sum (d)^2}{n-m} \right)^{\frac{1}{2}},
\]

где \(d \) — отклонение наблюдения от рассчитанной величины регрессии; \(m \) — число постоянных в уравнении регрессии; и \((n-m) \) представляет степени свободы в производном уравнении.

Стандартное отклонение \((S_y) \). Мера изменения распределения величин относительно их значения. Положительный корень квадратного из суммы квадратов отклонений от среднего арифметического, деленной на \((n-1) \); определяется формулой:

\[
S_y = \left(\frac{\sum (y_i - \overline{y})^2}{n-1} \right)^{\frac{1}{2}},
\]

где \(\overline{y} \) — среднеарифметическое ряда \(n \) — независимых измерений переменной \(y \), а \((n-1) \) показывает потерю одной степени свободы.

Точность. Степень согласия результата измерения с действительной величиной. Предполагается, что учтены все известные поправки.

Чувствительность. Связь изменения реакции с соответствующим изменением стимула (вызывающего эту реакцию), или значение стимула, необходимого для проявления реакции, превышающей определенную величину уже существующей реакции, вызванной другими причинами.

Эталонное измерение. Измерения, использующие наиболее передовые достижения науки и техники. Результат такого измерения является наилучшим приближением к действительной величине.

2.3.3.3 Виды ошибок

Ложные ошибки должны устраняться путем исключения тех измерений, в которых они присутствуют.

Эти ошибки можно определить путем независимой статистической проверки, например такой, которая описана в ИСО 5168 (ISO, 2005) и которая определяет критерий отбраковки.

Систематическая ошибка главным образом зависит от приборного оснащения и не может быть снижена за счет увеличения количества измерений при неизменных приборах и условиях проведения измерений. Если величина систематической ошибки известна, то ее следует прибавить или вычесть из результата измерения, и тогда в дальнейших расчетах эту ошибку можно считать равной нулю. Систематическую ошибку следует устранять путем исправления, правильной установки приборов или их замены и/или путем изменения условий стока, например длины прямолинейного участка русла в районе измерительного створа. Эти ошибки часто вызываются сложными условиями проведения измерений, такими как неустойчивый сток, мелкодноное или плохое выбор местоположения измерительной станции.

Случайные ошибки нельзя устранить, но можно уменьшить их влияние путем повторных измерений элементов. Неопределенность среднего арифметического, вычисленная по \(n \)-независимым измерениям, в \(n \) раз меньше, чем неопределенность одного измерения. Распределение случайных ошибок обычно можно принять за нормальное (или Гаусса). В некоторых случаях нормальное распределение может или должно быть заменено другими статистическими распределениями.

2.3.3.4 Источники ошибок

Довольно трудно перечислить все возможные источники ошибок, поскольку у любого прибора или метода измерения они свои. Конкретные источники обычно упоминаются в описаниях приборов и инструкциях по эксплуатации, таких как описания и инструкции в Стандартах ИСО или в Manual on stream gauging (Наставление ВМО по измерению расхода воды) (WMO-No. 519). Некоторые типичные источники ошибок перечислены ниже:

а) исходная ошибка или ошибка установки нуля, возникающая в результате неправильного определения исходной точки отсчета прибора, например нуля водомерной рейки, разницы между нулем водомерной рейки и уровнем гребня водослива;

б) ошибка в отсчете: возникает в результате неточного определения показаний прибором, например: из-за плохой видимости, волнения или ледовых явлений на водомерном посту;
c) ошибка интерполяции: обусловлена неточной оценкой положения указателя прибора относительно двух смежных меток на приборной шкале, между которыми расположен указатель;

d) ошибка наблюдения: подобна ошибке в отсчете, только зависит она от небрежности или некомпетентности наблюдателя;

e) ошибка, возникающая из-за неточности одной или нескольких переменных, необходимых для определения измеряемого значения;

f) гистерезис (см. определение в разделе 2.3.3.2);

g) ошибка, вызванная нелинейностью, которая возникает в результате отклонения изменения показаний прибора от пропорциональной зависимости с соответствующим изменением значения измеренной величины за пределами установленного диапазона;

h) ошибка, вызванная нечувствительностью, возникающая тогда, когда прибор не может зафиксировать изменение измеряемого элемента;

i) диверсия, которая зависит от особенностей прибора, когда его измерительные характеристики при определенном использовании меняются с течением времени (например, механические часовые механизмы изменяют показания со временем и зависят от окружающей температуры);

j) ошибка, вызванная неустойчивостью, которая возникает, когда в приборе не могут постоянно стабильно поддерживаться определенные специальные метеорологические условия;

k) ошибка при измерении вне определенного диапазона, которая возникает при использовании прибора вне его диапазона эффективного измерения, ниже минимального или выше максимального значения, которые определяются конструктивными особенностями или установкой прибора (например, неожиданно высокий уровень воды);

l) ошибка использования прибора за пределами допустимой точности, которая возникает при неправильном использовании прибора, когда минимальная ошибка больше допустимой при измерении.

2.3.3.5 Вторичные ошибки измерения

Гидрологические характеристики часто вычисляются по нескольким измеренным составляющим. Например, расход на измерительных сооружениях вычисляется как функция коэффициента расхода, характеристики размеров и напора. Для оценки суммарной неопределенности можно использовать переходную ошибку теории Гаусса.

Если количество Q является функцией нескольких измеренных величин x, y и z, то ошибку e_Q в Q, вследствие ошибок ex, ey и ez, в x, y и z соответственно следует вычислять с помощью следующего упрощенного уравнения:

\[(e_Q)^2 = \left(\frac{\partial Q}{\partial x} e_x \right)^2 + \left(\frac{\partial Q}{\partial y} e_y \right)^2 + \left(\frac{\partial Q}{\partial z} e_z \right)^2. \]

(2.6)

где \(\frac{\partial Q}{\partial x} \), \(\frac{\partial Q}{\partial y} \), и \(\frac{\partial Q}{\partial z} \) являются функциями частных производных, которые точно отражают связь зависимой переменной с независимыми.

При гидрологических измерениях практически невозможно проведение повторных полевых наблюдений в одинаковых условиях. Поэтому стандартное отклонение нужно определять по данным измерений переменных величин (как, например, в случае кривой зависимости расхода от уровня).

Стандартная ошибка расчета:

\[s_e = \left(\frac{\sum d^2}{n - 2} \right)^{1/2} \]

(2.7)

значений наблюдений исключительно важна для того, чтобы охарактеризовать связь между расходом и уровнем, которая имеет нелинейный вид и приближается к логарифмическому виду и требует специальной обработки. Стандартная ошибка является оценкой точности связи, рассчитанной по регрессионной зависимости, и, следовательно, представляет собой интервал, в котором с наибольшей вероятностью следует ожидать нахождение истинного среднего значения (рисунок 1.2.4).

Для маленьких выборок было бы полезным иметь исправленную стандартную ошибку расчета, полученную путем умножения \(s_e \) на \(\left(\frac{n}{n - 2} \right)^{1/2} \), то есть:

\[s_{se} = \frac{s_e}{\sqrt{n}}. \]

(2.8)

2.3.3.6 Характеристика приборов и методов наблюдений

Точность измерительного прибора может характеризоваться неопределенностью при определенном значении, которая соответствует максимальному или минимальному значению измеренной величины. Точность прибора, не соотнесенная с контрольным значением, может неправильно пониматься и истолковываться. Инструментальная точность в большинстве случаев представляет собой только один из компонентов общей точности измерения.
Для того чтобы охарактеризовать неопределенность, обычно применяют 95-процентный доверительный уровень; т. е. в 5 % случаев ошибка может выйти за пределы установленного доверительного интервала. В соответствии с Техническим регламентом (ВМО-№ 49), том III, измерительные погрешности следует отражать в одной из следующих форм:

a) неопределенности, выраженные в абсолютных выражениях: измеренное значение гидрологических элементов, например, расход: \(Q = \ldots \); случайная неопределенность: \((e_s)_{95} = \ldots \)

b) неопределенность, выраженная в процентных единицах: измеренное значение гидрологических элементов \(Q = \ldots \); случайная процентная неопределенность \((e_s)_{95\%} = \ldots \%

На практике неопределенности измерений представляются в виде, когда неопределенность выражается соотношением (или в процентах) измеренных значений \(Q_m \). Например, при \((e_s)_{95\%} = 10 \% \), истинное значение \(Q \) 95 % будет лежать в пределах \(Q_m \pm 0,10 Q_m \). В этом примере неопределенность выражена при средних принятых условиях измерения.

2.3.3.7 Рекомендуемая точность гидрологических измерений

Рекомендуемая точность в основном зависит от предполагаемого использования измеренных данных (цели измерения), от возможностей и наличия приборов и финансовых средств. Поэтому она не может быть постоянной величиной и должна скорее находиться в гибких пределах. Уровни рекомендуемой точности сведены в таблицу I.2.5, которая может служить основным руководством по приборам и методам наблюдений. Во многих странах национальные стандарты приближены к требованиям, которые могут возникнуть на участке проведения наблюдений. Некоторые приборы имеют встроенные проверки калибровки, и очень важно, чтобы они использовались.

2.4 Калибровка приборов

Как говорилось выше, одним из основных источников ошибок являются изменения измерительных свойств приборов. Гидрологические приборы состоят из разнообразных механических, электромеханических и электронных устройств. Механические приборы, такие как гидрометрические вертушки или анемометры от признанных производителей стандартизированы и обычно откалиброваны на заводе-изготовителе. Разумеется, заводская калибровка будет применима, только если прибор не был поврежден и используется надлежащим образом. Многие национальные гидрологические службы обладают необходимыми ресурсами для того, чтобы проверить соответствие заводской калибровки международным стандартам, установленным для производства и калибровки, например гидрометрических вертушек.

В настоящее время все больше и больше проявляется тенденция заменить механические устройства на электронные. Хотя они более надежные, чем механические, их редко отремонтировать их в полевых условиях практически невозможно, и поэтому их приходится заменять другим устройством. Кроме того, переход с электромеханических устройств на электронные вызывает определенные трудности для гидрологических служб, поскольку калибровка приборов и все, что с ней связано, могут значительно отличаться. Характеристики калибровки электронных приборов могут отклоняться от номинальных в зависимости от изменений давления и температуры, которые могут возникнуть на участке проведения наблюдений. Некоторые приборы имеют встроенные проверки калибровки.

2.4.1 Общая концепция проектирования сети

Гидрологическая наблюдательная сеть представляет собой группу станций по сбору данных, которые проектируются и действуют для решения одной или целого ряда взаимосвязанных задач. Очень часто эти задачи связаны с какой-либо практической целью, ради которой эта сеть разработана, например для оценки водных ресурсов, планирования строительства или для проектных расчетов. Та или иная гидрологическая станция или водомерный пост могут входить в несколько сетей, если их информация служит разным целям. В большинстве частей мира это является наиболее распространенной практикой. Но с другой стороны, одна сеть может включать в себя станции и установки разных типов, если каждая из них вносит свой вклад в работу сети. Таким образом, калибровки и гидрометрические станции могут входить в сеть по прогнозированию наводнений.

Термин «сети» нередко употребляется в нестрогом значении слова. Например, часто можно услышать о сети поверхностных вод, сети подземных вод, дождемерной сети или сети по качеству воды, когда говорящий имеет в виду только комплекты приборов или станции, не увязывая их с целями и задачами. При таком расплывчатом определении термина средства по сбору
Глава 2. Методы наблюдений

Таблица I.2.5. Рекомендуемая точность измерений (уровни неопределенности) при 95-процентном доверительном уровне

<table>
<thead>
<tr>
<th>Измеряемый параметр</th>
<th>Точность (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Осадки (количество и вид)</td>
<td>3–7</td>
</tr>
<tr>
<td>Интенсивность дожда</td>
<td>1 мм·ч⁻¹</td>
</tr>
<tr>
<td>Толщина снега (в точке)</td>
<td>1 см при толщине менее 20 см или 10 %, если более 20 см</td>
</tr>
<tr>
<td>Содержание воды в снеге</td>
<td>2,5–10</td>
</tr>
<tr>
<td>Испарение (в точке)</td>
<td>2–5 %, 0,5 мм</td>
</tr>
<tr>
<td>Скорость ветра</td>
<td>0,5 м·с⁻¹</td>
</tr>
<tr>
<td>Уровень воды</td>
<td>10–20 мм</td>
</tr>
<tr>
<td>Высота волны</td>
<td>10 %</td>
</tr>
<tr>
<td>Глубина воды</td>
<td>0,1 м, 2 %</td>
</tr>
<tr>
<td>Ширина водной поверхности</td>
<td>0,5 %</td>
</tr>
<tr>
<td>Скорость течения</td>
<td>2–5 %</td>
</tr>
<tr>
<td>Расход</td>
<td>5 %</td>
</tr>
<tr>
<td>Концентрация взвешенных частиц</td>
<td>10 %</td>
</tr>
<tr>
<td>Перенос взвешенных наносов</td>
<td>10 %</td>
</tr>
<tr>
<td>Перенос донных наносов</td>
<td>25 %</td>
</tr>
<tr>
<td>Температура воды</td>
<td>0,1–0,5 °C</td>
</tr>
<tr>
<td>Растворенный кислород (при температуре воды не более 10 °C)</td>
<td>3 %</td>
</tr>
<tr>
<td>Мутность</td>
<td>5–10 %</td>
</tr>
<tr>
<td>Цвет</td>
<td>5 %</td>
</tr>
<tr>
<td>pH</td>
<td>0,05–0,1 pH единац</td>
</tr>
<tr>
<td>Электропроводимость</td>
<td>5 %</td>
</tr>
<tr>
<td>Толщина льда</td>
<td>1–2 см, 5 %</td>
</tr>
<tr>
<td>Ледяной покров</td>
<td>5 % при ≥ 20 кг·м⁻³</td>
</tr>
<tr>
<td>Влажность почвы</td>
<td>1 кг·м⁻³ ≤ 20 кг·м⁻³</td>
</tr>
</tbody>
</table>

Примечания:
1. Когда рекомендуется предел точности для уровней, более высокая точность связана с измерениями в относительно хороших условиях, а менее низкая — в неблагоприятных условиях.
2. Рекомендуемая точность измерений осадков (3–7 %) зависит от многих факторов, в том числе характеристик осадкомера. Заниженные измерения, получаемые осадкомерами с отверстием над поверхностью, определяются скоростью ветра и типом осадков. При слабом снеге, выпавшем при сильном вете, он может достигать 50 % и более.

данных, включенные в сеть, могут даже по-разному использовать получаемую информацию. Это расхождение в использовании является не просто семантическим несоответствием. При обсуждении гидрологами и руководителями программ проблем проектирования сети и анализа ее работы оно может вызывать путаницу и привести к заблуждению.

Проектирование сетей, в принципе, может основываться на максимизации экономической ценности собираемых данных. Однако на практике бывает иначе. Обычно при принятии решений в области водных ресурсов экономическая значимость гидрологических данных никогда не учитывается. Решения принимаются на основе тех данных, которые имеются, и право отложить принятие решения до получения новых данных обычно не используется или признается неприемлемым. Однако в работах ВМО Cost-benefit Assessment Techniques and User Requirements for Hydrological Data (Методы оценки стоимости и потребительские требования к гидрологическим данным) (WMO-No. 717) и Economic and Social Benefits of Meteorological and Hydrological Services (Материалы Технической конференции по социально-экономической эффективности гидрометеорологического обслуживания) (WMO-No. 733) рассматриваются несколько примеров, которые являются исключением из этого общего правила. Обзор гидрометрической сети в одной канадской провинции

Вместо полного экономического анализа проекты сетей обычно основаны на суррогатных мерах экономики или же на руководящих указаниях, которые приводятся ниже в данной главе.

2.4.1 Определение проекта сети

Полный проект сети должен отвечать на следующие вопросы, относящиеся к сбору гидрологических данных:

a) какие гидрологические переменные должны наблюдаться;
b) где их нужно наблюдать;
c) как часто их нужно наблюдать;
d) какова продолжительность программы наблюдений;
e) с какой точностью должны проводиться наблюдения.

Для ответа на эти вопросы процедуру разработки проекта сети можно представить в виде пирамиды, как это показано на рисунке 1.2.5. Основание пирамиды — гидрологическая наука. Без полного понимания гидрологической обстановки в районе организации сети маловероятно, что проектируемая сеть будет выдавать информацию достаточно эффективно. Понимание гидрологии приходит как в результате образования, так и в результате приобретенного опыта, но ничто не может заменить опыт при создании гидрологической сети в таком районе, где либо мало, либо совсем нет исторических данных.

В правой части пирамиды представлены количественные методы, отражающие гидрологическую неопределенность. Гидрологическая неопределенность всегда будет иметь место в результате ошибок измерений и пространственно-временной изменчивости измеряемых характеристик. Совершенной гидрологической информации не существует. Вероятностное описание этих ошибок является самым эффективным средством отражения гидрологической неопределенности. В теории вероятности для этой цели имеются теоремы и аппарат для ее выражения; кроме того, она дает понимание, необходимое для правильного использования статистических методов. На рисунке 1.2.5 статистический инструментарий представлен теорией взятия проб, а также корреляционным и регрессионным анализом, которые обычно используются при количественном подходе к проектированию сетей. Однако существует много других областей статистики, которые могут быть полезны при анализе и проектировании сетей. Краеугольным камнем теории неопределенности является Байесовский анализ, который сам по себе обладает некоторой неопределенностью в описании неопределенности. Иначе говоря, вероятностные методы описания неопределенности, основанные на статистическом анализе гидрологических данных, сами являются неопределенными. Уменьшение неопределенности в описании неопределенности является ключевым аспектом максимального использования информации, содержащейся в тех данных, которые будет выдавать сеть.

Рисунок 1.2.5. Конструкция из основных блоков, учитываяющихся при проектировании сети
нет, или они настолько громоздки для компьютеров, что они могут быть эффективными.

На вершине пирамиды — теория решений, которая является формальным механизмом для интеграции всех нижележащих компонентов. Применение теории решений при проектировании сети не требуется и в большинстве случаев даже невозможно. Однако понимание ложных и истинных предпосылок помогает проектировщику лучше предвидеть последствия принятых им окончательных решений.

Левая сторона пирамиды представляет довольно аморфную группу технологий под заголовком «социально-экономический анализ». Помимо социальных наук и экономики эта часть структуры проекта сети включает политическую науку и саму политику. Последняя играет очень важную роль в реализации потенциальных возможностей воды и, следовательно, ценности получаемых на сети данных. Левая сторона — это часть структуры, на которую при проектировании сети обычно обращают меньше всего внимания. Это, по-видимому, можно объяснить двумя причинами: заниматься объективно, с помощью математики, анализом подобного рода довольно трудно; для полных исследований требуется синтез данных многих дисциплин, не относящихся к гидрологии и техническим аспектам водных ресурсов. Таким образом, проектирование сети, включающее серьезный социально-экономический анализ, вероятно, потребует много денежных и временных затрат.

Тем не менее, посты по сбору гидрологических данных часто устанавливаются для удовлетворения насущных социальных потребностей и экономических трудностей, и относительно мало уделяется внимания удовлетворению потребностей в гидрологической информации в долгосрочной перспективе. Помимо решения научных задач, посты, предназначенные для сбора данных, могут создаваться для того, чтобы помочь руководителям в реагировании на экстремальные явления, такие как наводнения и засухи, в определение воды между конкурирующими потребителями или в соблюдении требований нормативных документов. Посты, используемые для этих целей, могут также вести к росту понимания значимости гидрологии, однако оптимизация окончательного вида сети для решения данной задачи не подразумевается.

2.4.1.2 Другие подходы

Поскольку проектирование полномасштабной и совершенной сети в современном мире либо невозможно, либо непрактично, при проектировании сетей используются подходы с другими мерками, целями и критериями. Так, например, вместо оптимизации экономической ценности данных, обычно прибегают к максимизации содержания информации, получаемой от сети. Исследования показали, что в результате такого решения, если должным образом использовать получаемую информацию, можно ожидать, что она внесет свой вклад в экономическую значимость. Чем больше информации, тем лучше решение. Однако экономическая значимость информации не может линейно соотноситься с её количеством; маргинальная ценность дополнительной информации уменьшается по мере получения ее определенного количества. Таким образом, использование этого суррогатного критерия может вести гидрологическую службу в верном направлении лишь в том случае, когда в наличии имеется очень небольшое количество гидрологической информации. Если же в данном районе уже имеется хорошая информационная база, использование этого подхода может привести к сбору излишних данных.

Среди основных аналитических суррогатных методов, обладающих определенными преимуществами используемых при разработке наблюдательных сетей, назовем следующие: картографический анализ; корреляционные и регрессионные методы; вероятностное моделирование; детерминистическое моделирование и методы районирования. Каждый метод имеет особенности применения; выбор метода зависит от ограниченности имеющихся данных и типа рассматриваемых проблем. В определенных случаях нередко применяются комбинации различных методов. В публикации ВМО Casebook on Hydrological Network Design Practice (Справочное пособие по практике проектирования гидрологической сети) (WMO–No. 324) излагается применение этих методов в качестве средства для определения характеристик сети. Дополнительные примеры приведены в других публикациях (Project Report WMO/IHD No. 12; WMO-Nos. 433, 580, 806).

2.4.1.3 Основная сеть

Ценность данных, получаемых от сети, зависит от того, как они впоследствии будут использованы. Тем не менее, при проектировании сети многие случаи использования гидрологических данных еще неясны, их трудно предвидеть, и поэтому нет оснований для сбора конкретных данных, которые впоследствии могут оказаться очень ценными. Фактически, если бы требовалось заранее готовить экономическое обоснование, было бы собрано очень мало данных. Однако у современного общества выработалось сознание того, что информация является товаром, который необходимо покупать как страхование для защиты от непредвиденных случаев в будущем для принятия решений по водным ресурсам. Базовая сеть должна обеспечить такой уровень
гидрологической информации в любом месте данного региона, который исключал бы грубые ошибки при принятии решений по водным ресурсам. Для достижения этой цели необходимо выполнить, по крайней мере, три условия:

a) должен существовать механизм передачи гидрологической информации с поста, где она получена на любой другой пост в данном районе;
b) на любом посту должны также иметься средства для определения количества гидрологической информации (или наоборот — неопределенности);
c) процедура принятия решений должна подразумевать возможность сбора дополнительной информации, прежде чем будет принято окончательное решение.

2.4.1.3.1 Мнимальная сеть

На ранних стадиях разработки гидрологической сети первым шагом должно быть создание минимальной сети. Такая сеть должна состоять из минимального числа станций, которое, на основе опыта гидрологических агентств многих стран, признано необходимым для того, чтобы начать планирование экономического освоения водных ресурсов.

Минимальная сеть — это сеть, которая позволит избежать серьезных просчетов в развитии и эксплуатации водных ресурсов в масштабе, соответствующем общему уровню экономического развития страны. Такая сеть должна быть создана как можно скорее с включением в нее уже существующих станций. Другими словами, минимальная сеть обеспечивает основу для расширения сети, чтобы она отвечала конкретным целям и нуждам в будущем. При этом важно подчеркнуть, что минимальная сеть недостаточна для составления подробных планов развития и не отвечает многочисленным требованиям развитого региона по разработке проектов и управлению водными ресурсами.

2.4.1.3.2 Расширение информационной базы

Как только начинает действовать минимальная сеть, в регионе определяются гидрологические зависимости, интерпретируется информация, создаются модели для определения общих гидрологических характеристик, включая осадки и сток в любом месте данного региона. В неизученных районах должна действовать основная сеть наблюдательных станций, обеспечивающая необходимый уровень информации до тех пор, пока не будут определены региональные гидрологические связи.

В большинстве случаев результатом этого является увеличение плотности гидрологических станций. Но так бывает не всегда. Поскольку модели используются для передачи информации с гидрометрических постов на участки, где их нет, то качество модели играет также важную роль в определении плотности основной сети.

Если модель очень хорошая, то она может извлекать информацию из имеющихся данных лучше, чем модель низкого качества, и хорошей модели потребуется меньше данных для получения региональной информации заданного уровня, чем модели более низкого качества. В крайнем случае, региональная модель может быть такого хорошего качества, что в основной сети может быть снижен уровень сбора данных.

Поскольку от станций основной сети зависит очень многое, необходимо, чтобы получаемые с них материалы были высокого качества. Даже если станция обусловлена правильно, только корректно выполненные записи наблюдений будут представлять ценность. Осуществление непрерывных наблюдений в течение длительного времени — особенно за период в 20 лет и свыше — может быть затруднено. Минимальная сеть, в которой станции не обслуживаются или обслуживают нерегулярно, перестает быть эффективной и не оправдывает своего назначения. Поэтому надо заботиться не только об установлении сети, но и об обеспечении непрерывности ее работы, надежности мониторинга и точности собираемой информации.

При проектировании и введении в строй базовой сети учитываются и экономические, и технические соображения; число наблюдательных станций для работы на неопределенно длительный период времени на должно быть слишком большим. Следовательно, процедура взятия проб должна быть организована таким образом, чтобы максимально повысить экономическую эффективность основной сети. При одном из подходов станции подразделяются на две категории: главные (или базовые) станции и вторичные (или вспомогательные) станции. Последние работают лишь до тех пор, пока не будут получены устойчивые связи (обычно путем корреляции) с одной или более базовыми станциями, после чего их фонды и оборудование могут использоваться для устройства других вторичных станций. Записи на закрытых станциях могут быть восстановлены посредством записей базовой станции и путем связи между станциями. Временами может потребоваться переустройство вторичных станций, если есть основания полагать, что на вторичной, либо связанной с ней базовой станции (станциях), условия изменились. Непрерывность работы основных станций базовой сети составляет основу для мониторинга долгосрочных тенденций в гидрологических условиях данного региона. Это особенно важно в свете потенциальных изменений гидрологического цикла, которые могут быть вызваны изменениями в землепользовании, а также газами, вызывающими парниковый эффект.

2.4.1.4 Проектирование комплексной сети

Гидрологический цикл непрерывен, и его внутренние связи допускают частичный перенос информации из
той части цикла, где она получена, в другую часть цикла. Эффективность такого переноса пропорциональна степени гидрологического понимания, отраженной в моделях, которые используются для определения соотношения (и информации) между водой в разных частях цикла. Так, например, записи об осадках на водосборе или вблизи водосбора позволяют восстановить данные о стоке за тот период, когда гидрометрический пост был неисправен, при условии, что надежная модель типа «осадки–сток» была откалибрована за то время, когда и осадкомерные, и гидрометрические посты работали исправно. Скважины для наблюдения за подземными водами могут выполнять такую же роль в случае неисправности гидрометрического поста, если при помощи этой скважины осуществляется мониторинг зеркала грунтовых вод военноносного слоя, непосредственно связанного со стоком.

В настоящее время мало что сделано для того, чтобы эти взаимодействия были должным образом учтены при проектировании сети. В идеальном случае, взаимодополняемость дождемерных и водомерных пунктов, образующих сети для прогнозирования паводков, могла бы быть использована, например, при проектировании сети для оценки водных ресурсов. Если экономически скоординировать обе эти сети, их можно было бы оптимизировать вместе, что в результате даст максимум эффективности в выдаче информации с обеих. Несмотря на эту техническую особенность, сети следует проектировать в итерационном режиме, так чтобы каждый уровень развития сети являлся основой для следующего уровня. Этот пример можно расширить. Сеть, предназначенная для прогнозирования паводков, вероятно, будет состоять из гидрометрических и осадкомерных постов, расположенных в определенных местах, удобных и необходимых для получения информации. Поскольку при оценке водных ресурсов к источникам информации обычно предъявляется меньше особых требований, то весьма вероятно, что многие посты сети, предназначенной для прогнозирования паводков, могут войти в сеть для оценки водных ресурсов и быть использованы в качестве основы при ее разработке. Такой итерационный подход особенно полезен при проектировании комплексных сетей, таких как базовая, на основе сетей с более ограниченными требованиями к информации. Сюда относятся реперные станции, репрезентативные бассейны и сети для оперативных целей.

2.4.1.4.1 Станции для оперативных целей

Создаваемые станции могут служить таким оперативным целям, как эксплуатация водоемов, мелиорация, судоходство, мониторинг качества воды, прогнозирование наводнений, научные исследования. Реперные или станции международного обмена также относятся к этой категории. Длительность эксплуатации таких станций связана с той целью, для которой они предназначены.

В некоторых случаях цель, для которой предназначена станция, может требовать наблюдения только одной нерегулярной стационарной переменной или ограничиваться только одним временем года. Например, гидрометрическая станция может существовать при максимальной реке для регистрации только пика максимального паводка или из осадкомера для измерения общего количества осадков за сезон. Хотя такие станции могут выполнять очень важную функцию, они не обеспечивают той информации, которая нужна для общих гидрологических анализов. Следовательно, такие станции могут быть включены, а могут и не быть включены в базовую гидрологическую сеть.

2.4.1.4.2 Реперные станции

Каждая страна и каждый регион большой страны должен иметь одну реперную станцию для обеспечения непрерывной серии наблюдений за гидрологическими и климатологическими переменными. Гидрологические реперные станции построены и установлены в тех районах, которые подвергались в прошлом или могут подвергнуться в будущем изменениям, вызванным деятельностью человека. Поскольку реперные станции — это станции длительных наблюдений, им надо уделять должное внимание. В качестве примера можно привести Опорную гидрометрическую сеть бассейнов в Канаде (Harvey and others, 1999). Климатологические реперные станции известны как станции международного обмена.

2.4.1.4.3 Репрезентативные бассейны

Наличие репрезентативного бассейна желательно в каждом природном регионе, особенно в тех районах, где ожидается большой экономический рост или есть особо сложные гидрологические проблемы. В своей простейшей форме они позволяют одновременно изучать осадки и сток, помогая таким образом компенсировать недостатки кратковременных наблюдений и низкую плотность минимальных сетей.

2.4.1.4.4 Проектные станции

Это станции, созданные на ограниченный промежуток времени для решения конкретных задач, зачастую научно ориентированные. Другими наиболее часто встречающимися задачами могут быть измерения до или после физического воздействия на бассейн или для дополнения регионального охвата базовой сети. Проектные станции характеризуются:

а) ограниченным сроком службы;

б) качеством данных в зависимости от цели.
2.4.1.5 Проведение анализа сети

На рисунке I.2.6 показано, какие шаги следует предпринять, чтобы провести обзор и реконструкцию уже существующей гидрологической сети. Такие обзоры должны проводиться регулярно, чтобы эффективно использовать уменьшение гидрологической неопределенности, обусловленное получением дополнительных данных после выполненного анализа сети, и подготовить сеть к социально-экономическим переменам. Ниже приводится описание каждого отдельного этапа анализа.

Установленная структура

Должна быть указана роль и назначение всех организаций, вовлеченных в различные аспекты деятельности по освоению водных ресурсов (в первую очередь, ответственные законодательно). Следует улучшить взаимосвязь между этими организациями, чтобы гарантировать координацию и интеграцию в отношении сетей сбора данных.

Назначение сети

Назначение сети должно определяться через ее потребителей и пользователей. Потребители и пользователи данных могут меняться во времени и пространстве.

Также необходимо определить потенциально возможные потребности в будущем и учесть их при проектировании сети.

Задачи сети

На основе назначения сети и исходя из вида требуемой информации можно сформулировать одну или несколько задач создаваемой сети. Определение последствий неспособности обеспечить этой информацией может доказать полезность создаваемой сети в дальнейшем.

Установленные приоритеты

При наличии более одной цели необходимо установить приоритеты для дальнейшей работы. При условии, что все задачи укладываются в бюджет, в этом нет необходимости. Однако, если этого не происходит, задачи более низкой приоритетности могут быть удовлетворены не полностью.

Оценка существующих сетей

Информацию о существующих сетях следует собирать и анализировать для того, чтобы определить, насколько существующая сеть соответствует выдвигаемым к ней требованиям. Анализ может заключаться в сравнении ее с другими бассейнами и/ или сетями.

Проектирование сети

В зависимости от имеющейся информации и от поставленных целей подбираются самые подходящие методы и технологии для проектирования сети. Это могут быть простые гидрологические характеристики, регрессионные зависимости или более сложный анализ сетей с использованием общепринятого метода наименьших квадратов.

Операции по оптимизации

Значительная часть стоимости информации уходит на процедуры по эксплуатации. Сюда входят типы приборов, частота посещения станций, характер полевых выездов. Следует применять процедуры по эксплуатации, требующие минимальных затрат.

Бюджет

В зависимости от определенного типа сети и процедур по эксплуатации можно установить стоимость эксплуатации сети. Если она не выходит за рамки бюджета, можно перейти к следующему этапу. В противном случае, необходимо либо изыскать дополнительные фонды, либо рассмотреть цели и приоритеты с тем, чтобы определить, где можно сократить затраты. Такой
Глава 2. Методы наблюдений

2.4.2 Плотность станций сети

Понятие плотности сети должно служить общим ориентиром при отсутствии специального руководства. В таких случаях запроектированная плотность должна отражать существующие социально-экономические и физико-климатические условия; следует также применять методы компьютерного математического анализа; там, где имеются данные, оптимизировать плотность сети, необходимую для удовлетворения имеющихся потребностей.

Как было отмечено в разделе 2.4.1.3.1, минимальная сеть — это сеть, при наличии которой не будет серьезных недостатков в управлении водными ресурсами в соответствии с общим уровнем экономического развития и экологическими потребностями страны. Она должна быть установлена как можно скорее; кроме того, она должна включать в себя все существующие станции, соответствующие ее профилю. Иначе говоря, такая сеть должна обеспечивать основу для дальнейшего расширения с целью удовлетворения потребностей в информации при использовании водных ресурсов.

В следующих разделах рекомендованы значения минимальных плотностей гидрологических станций разных типов для различных климатических и географических зон. Эти рекомендации были составлены на основе обзора отзывов стран-членов ВМО на Проект оценки опорной гидрологической сети (WMO/ TD-No. 671); они представлены в таблице I.2.6. Однако приведенные рекомендуемые плотности сетей затем были пересмотрены в ходе исследования, проведенного Комиссией по гидрологии. Пересмотренные рекомендуемые плотности сетей будут размещены на веб-сайте ВМО как часть электронной версии настоящего Руководства.

Невозможно определить число зон, достаточное для представления существующего разнообразия гидрологических условий. Простейшим и самым точным критерием классификации зон был бы критерий на основе их ранжирования по площади и сезонным колебаниям осадков. Каждая страна могла бы представить надежную карту годовых осадков, и на этой основе могла бы быть создана минимальная сеть. Но это не поможет многим странам, более всего нуждающимся в сети, поскольку у них имеется очень мало рядов наблюдений, и поэтому составление надежной карты осадков невозможно. В качестве особой категории следует рассматривать страны, где осадки

Таблица I.2.6. Минимальные плотности, рекомендуемые для осадкомерных станций
(площадь в км² на каждую станцию)

<table>
<thead>
<tr>
<th>Физико-географические районы</th>
<th>Осадки</th>
<th>Испарение</th>
<th>Поток</th>
<th>Наносы</th>
<th>Качество воды</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Нерегист-</td>
<td>Самописующие</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>рирующие</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прибрежный</td>
<td>900</td>
<td>9000</td>
<td>50000</td>
<td>2750</td>
<td>18300</td>
</tr>
<tr>
<td>Горный</td>
<td>250</td>
<td>2500</td>
<td>50000</td>
<td>1000</td>
<td>6700</td>
</tr>
<tr>
<td>Равнинны (внутри страны)</td>
<td>575</td>
<td>5750</td>
<td>5000</td>
<td>1875</td>
<td>12500</td>
</tr>
<tr>
<td>Холмистый/неровный</td>
<td>575</td>
<td>5750</td>
<td>50000</td>
<td>1875</td>
<td>12500</td>
</tr>
<tr>
<td>Малые острова</td>
<td>25</td>
<td>250</td>
<td>50000</td>
<td>300</td>
<td>2000</td>
</tr>
<tr>
<td>Урбанизированные территории</td>
<td>–</td>
<td>10–20</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Полярные/аридные</td>
<td>10000</td>
<td>100000</td>
<td>100000</td>
<td>20000</td>
<td>200000</td>
</tr>
</tbody>
</table>
выпадают крайне неравномерно. В таких случаях построение классификации только на основе характеристики выпадения осадков не рекомендуется.

При проектировании сети также необходимо принимать во внимание плотность населения. Там, где плотность населения мала, очень сложно установить и эксплуатировать значительное число станций, несмотря на то, что станции обладают высоким уровнем автоматизации. Малонаселенные и труднодоступные районы обычно отличаются экстремальными климатическими условиями, например это засушливые или полярные леса.

Другая крайность — густонаселенные городские районы, где нужна плотная сеть дождемеров для временного и пространственного определения ливней, а также проектирования, управления, контроля ливне-дренажных систем в режиме реального времени и других инженерных приложений.

Исходя из вышесказанного, в весьма произвольном порядке было выделено ограниченное число крупных зон, что позволяет сформулировать некоторые общие правила для определения норм плотности. Для минимальных сетей выделено шесть типов физико-географических районов:

- прибрежный;
- горный;
- равнинный, расположенный внутри страны;
- холмистый/неровный;
- малые острова (площадью менее 500 км²);
- полярный/аридный.

К последнему типу можно также отнести группу территорий, на которых в настоящее время не представляется возможным достигнуть вполне приемлемой плотности из-за их малой населенности, низкого уровня развития коммуникаций и по другим экономическим причинам.

2.4.2.1 Климатологические станции

На климатологической сети базовой сети собирают следующие виды данных: осадки, снегомерная съемка и испарение. Подразумевается, что на станции, предназначенной для измерения испарения или снегомерной съемки, особенно на первой, обычно измеряют температуру, влажность, ветер, потому что эти метеорологические элементы влияют на испарение и снеготаяние.

2.4.2.1.1 Осадкомерные станции

Если следовать определенным принципам установки и использования постов, то небольшое число постов в минимальной сети может отвечать непосредственным нуждам. В общем случае, дождемеры должны распределяться равномерно, в соответствии с практической необходимостью получения данных и местонахождением наблюдателей-волонтеров. В горных районах необходимо уделить внимание вертикальной зональности, используя суммарные осадкомеры для измерения осадков на большой высоте. Осадкомеры могут быть сконструированы специально для измерения водного эквивалента снега, либо путем установки специальной защиты для сокращения выпадения осадков, либо используя датчики давления.

В дополнение к сети можно использовать регулярную неавтоматическую снегомерную съемку, но это не должно рассматриваться как часть сети.

Сеть должна состоять из осадкомерных постов трех типов:

- **a)** стандартные осадкомеры: их показания необходимо считывать ежедневно. Помимо суточных значений слоя осадков, наблюдений за снегопадом и слоем снежного покрова, на каждой стандартной осадкомерной станции следует проводить ежедневные наблюдения за состоянием погоды;

- **b)** самопищущие осадкомеры: в разрабатываемых сетях рекомендуется стремиться иметь, по меньшей мере, 10 % таких станций. В районах, подверженных интенсивному кратковременному выпадению осадков, следует добиваться наибольшей плотности станций, оборудованных самопищущими осадкомерами. Такие станции будут обеспечивать ценную информацию об интенсивности, распределении и продолжительности осадков.

- **c)** суммарные осадкомеры (сумматоры): они могут быть использованы в редконаселенных или отдаленных районах, таких как пустыни или горные районы. Эти приборы должны считываться ежемесячно, ежегодно и при любой возможности посещения станции.
Что касается размещения осадкомеров относительно гидрометрических станций, то координация их положения исключительно важно для того, чтобы данные осадкомеров могли быть учтены на каждой гидрометрической станции. Это необходимо для прогнозирования паводков или гидрологического анализа. Осадкомеры устанавливают либо на гидрометрической станции, либо вблизи нее, и в верхней части водосбора. Осадкомер должен находиться на участке гидрометрической станции только в том случае, если наблюдения являются репрезентативными для всего района. Возможны ситуации, когда осадкомеры размещают на некотором расстоянии от гидрометрической станции, например, если она находится в узкой, глубокой долине.

2.4.2.1.2 **Снегомерная съемка**

На тех осадкомерных станциях минимальной сети, где это возможно, необходимо вести наблюдения за выпадением снега, за высотой снежного покрова и запасом воды в нем.

Запасы воды в снежном покрове на момент его максимального накопления являются показателем общего количества осадков за сезон в тех районах, где зимние оттепели и зимнее снегоотложение не имеют большого значения. В таких районах снегомерные съемки снежного покрова на избранных маршрутах могут быть полезны для учета сезонных осадков в местах, в которых проведение обычных наблюдений невозможно. Такие снегомерные съемки дают полезную информацию, необходимую также для выпуска гидрологических прогнозов и изучения речных наводнений.

Снегомерные съемки проводятся специальными группами, оснащенными приборами для взятия проб скопившегося снега, определения высоты снежного покрова и запаса воды в нем (раздел 3.5). Число снегомерных маршрутов, их длина и расположение будут зависеть от топографии водосборов и от тех целей, для которых собираются данные о снеге. При выборе репрезентативных маршрутов следует учесть общую амплитуду высот частей водосбора, а также типы и расположение растительного покрова в данной местности. Хорошей плотностью считается один маршрут на 2 000–3 000 км² для неоднородного района и на 5 000 км² для однородного района и равнинной местности. Однако эти выводы нельзя считать безоговорочными, каждый случай должен рассматриваться отдельно.

На ранних этапах развития сети снегомерные съемки обычно проводятся раз в год, в то время, когда ожидается наибольшее скопление снега. По мере развития сети целесообразно производить регулярные и более частые наблюдения через определенные периоды времени в сезон выпадения снега. Как только становятся возможным, наблюдения за снежным покровом должны сопровождаться наблюдениями за связанными с этим метеорологическими факторами, такими как радиация, температура почвы и скорость ветра.

2.4.2.1.3 **Испарительные станции**

Испарение может быть определено косвенным путем по водному балансу, энергетическому балансу и аэродинамическими методами или непосредственно, путем измерений с помощью испарителей (глава 4). Испарительная станция состоит из стандартного испарителя отечественного производства, с помощью которого проводятся ежедневные наблюдения за испарением вместе с наблюдениями за осадками, максимальными и минимальными температурами воды и воздуха, скоростью и направлением ветра, относительной влажностью и температурой точки росы.

Испарение играет важную роль в долгосрочных исследованиях водного режима озер и водохранилищ и управлении водными ресурсами. В таких случаях число и размещение испарительных станций определяются в соответствии с площадью и конфигурацией имеющихся озер, а также особенностями рассматриваемого климатического района (или районов).

2.4.2.2 **Гидрометрические станции**

2.4.2.2.1 **Станции для наблюдений за стоком**

Главная задача сети гидрометрических станций заключается в получении информации о наличии ресурсов поверхностных вод, их географическом распределении и изменчивости во времени. В связи с этим величина и частота паводков и засух имеют огромное значение.

В общем случае вдоль главного течения больших рек должно быть установлено достаточное количество гидрометрических станций, что позволяет выполнять интерполяцию расходов воды между ними. Конкретное положение этих станций определяется топографическими и климатическими условиями. Если разница стока между двумя точками одной реки не превышает допустимую ошибку измерения на станции, то дополнительная станция не нужна. В этом контексте также необходимо подчеркнуть, что расход воды небольшого притока нельзя определить с точностью путем вычитания расходов на двух гидрометрических станциях, расположенных выше и ниже устья притока. Там, где сток притока представляет особый интерес, необходима отдельная станция, как, например, вторичная станция минимальной сети. Гидрометрические станции могут чередоваться с водомерными постами (раздел 2.4.2.2.2.).
Руководство по гидрологической практике

Базовые станции должны размещаться по возможности на реках с естественным режимом. Там, где это не имеет практического смысла, можно организовывать дополнительные станции на каналах или на водохранилищах для получения данных, необходимых для восстановления естественного стока на базовых станциях. Для этой цели могут быть полезными рассчитанные величины стока, проходящего через гидроэлектростанции или плотины, но для этого необходимо обеспечить тарирование контрольных устройств и турбин и периодическую проверку тарирования во время работы гидроэлектростанции.

Станции должны быть расположены в низовьях больших рек страны, непосредственно выше устья реки (обычно вне зоны влияния приливов), или в тех местах, где река пересекает границу. Станции должны быть также расположены в тех местах, где реки стекают с гор и выше тех мест, где берут воду для орошения. Кроме того, гидрометрические станции располагают там, где расход воды изменяется в значительной степени; ниже устья крупных притоков; при вытекании из озера; а также там, где высока вероятность крупного строительства. Наконец, гидрометрические станции часто создают вблизи больших городов с целью обеспечения ряда общественных нужд.

Для обеспечения необходимых измерений на малых реках должно быть, по крайней мере, столько же гидрометрических станций, сколько на главных артериях. Несмотря на необходимость проведения измерений на малых реках, устанавливать гидрометрические станции всех малых реках весьма непрактично. На расходы воды малых рек большое влияние оказывают местные факторы. В высокоразвитых регионах, где экономически важны даже самые малые реки, отсутствие сети наблюдений очень остро ощущается даже на водотоках с площадью водосбора всего 10 км².

Станции для измерения стока необходимо создавать в различных геологических и топографических условиях. Поскольку величины стока сильно меняются с высотой местности, базовые станции должны быть расположены так, чтобы они могли более или менее равномерно обслуживать все участки горного района, от подножия горы до более высоких районов. Следует принимать во внимание также различную экспозицию склонов, что очень важно в гористой местности. Необходимо также уделить особое внимание станциям, которые находятся в озерных районах, где влияние озера можно определить только путем установки дополнительных станций.

2.4.2.2 Уровень воды в реке

Уровень воды (высота поверхности воды) измеряется на всех гидрометрических станциях для определения расхода воды. Кроме того, существуют такие места, где необходимо проводить дополнительные наблюдения только за уровнем воды, что входит в функцию минимальной сети, например:

a) во всех крупных городах, расположенных вдоль рек, данные наблюдений за уровнем воды могут быть использованы для прогнозирования наводнений, водоснабжения и в целях обеспечения работы транспорта;

b) на крупных реках, в пунктах между гидрометрическими станциями, данные наблюдений за уровнем воды могут быть использованы для прогнозирования и мониторинга распространения наводнений.

2.4.2.2.3 Уровень воды в озерах и водохранилищах

На озерных станциях и станциях при водохранилищах выполняют наблюдения за уровнем и температурой воды, ветровым нагоном, соленостью, образованием льда и т. д. Такие станции создают на водоемах с площадью водной поверхности более 100 км². Так же, как и в примере с реками, создаваемая сеть должна подразумевать возможность получения информации о состоянии более мелких озер и водохранилищ.

2.4.2.2.4 Расход наносов и седиментация

Станции данного типа предназначены либо для измерения суммарного стока наносов в океан, либо для измерения эрозии, переноса или отложения наносов в пределах страны, бассейна и т. д. При проектировании минимальной сети особое внимание следует уделить эрозии, переносу и отложению наносов в пределах страны. Оптимальная сеть должна включать станции для измерения наносов в устье каждой важной реки, впадающей в море.

Перенос наносов является важной проблемой для засушливых районов, особенно там, где почвы рыхлые, и для горных районов, где необходимо знать расход наносов для различных инженерных решений.

При планировании базовой сети проектировщик должен быть предупрежден о том, что сбор данных о переносе отложений обходится значительно дороже, чем получение других гидрологических данных. Следовательно, выбор места для таких станций и определение их числа надо производить очень продуманно. Особое внимание следует уделить тем районам, для которых характерна сильная эрозия. После того как будет накоплен некоторый опыт, наблюдения за стоком наносов могут быть прекращены, если получение информации подобного рода перестает представлять какой-либо интерес.
Глава 2. Методы наблюдений

Данные о переносе наносов могут быть дополнены топографической съемкой отложений, осевших в озерах и водохранилищах. Для этого могут быть полезны ультразвуковые измерительные приборы. Однако эта информация не может заменить измерений переноса наносов на речных станциях. Измерение расхода наносов и расчет объема наносов рассмотрены в разделе 5.5.

2.4.2.2.5 Станции для наблюдений за качеством воды

Польза водоснабжения в большой степени зависит от химического качества воды. Наблюдения за химическим составом воды для целей, рассматриваемых в данном Руководстве, состоят в периодическом взятии проб воды на гидрометрических станциях и анализе ее основных составляющих. Технический комитет ИСО-147 подготовил более 200 международных стандартов, посвященных отбору проб для определения качества воды в полевых условиях и аналитическим методам расчета качества воды.

Число пунктов для взятия проб на реке зависит от ее гидрологических характеристик и типов водопользования. Чем выше флуктуации качества воды, тем более часто должны проводиться измерения. Во влажных районах, где концентрация растворенных веществ низкая, требуется меньше наблюдений, чем в сухом климате, где концентрация химических веществ, особенно таких важных ионов, как натрий, может быть высокой.

2.4.2.2.6 Температура воды

При каждом измерении расхода воды и взятии проб на гидрометрической станции необходимо измерять и записывать температуру воды. Время измерения температуры воды также должно быть зафиксировано. На тех станциях, где уровень воды наблюдается ежедневно, наблюдения за температурой также должны проводиться ежедневно. Эти наблюдения, затраты на которые ничтожны, могут дать информацию, полезную для изучения водных организмов, загрязнения, образования льда, источников охлаждения воды для промышленности, влияния температуры на перенос отложений, растворимости минеральных ингредиентов, или изменения климата.

2.4.2.2.7 Ледяной покров рек и озер

Регулярные наблюдения за ледяным покровом должны включать:
а) визуальные наблюдения за различными процессами образования и разрушения льда с записью даты появления первого плавучего льда, даты наступления полного ледостава, даты вскрытия ледяного покрова и даты полного ожигения. Эти наблюдения должны проводиться ежедневно; b) каждые 5–10 дней в двух или трех пунктах, вблизи выбранных для этого гидрометрических станций, должны одновременно проходить измерения толщины льда. Расположение измерительных пунктов определяется на основании подобных съемок ледяного покрова, проведенных в начале наблюдательного периода.

2.4.3 Особые требования к качеству воды

Существует несколько методов мониторинга качества воды. Мониторинг может осуществляться при помощи сети стратегически расположенных станций с длинным рядом наблюдений, на основе периодического проведения краткосрочных наблюдений или, чаще всего, путем сочетания обоих методов. Помимо основных задач программы, при определении расположения станций следует учитывать следующие факторы:
a) существующие условия и проблемы, связанные с водными ресурсами; b) центры потенциального роста (индустриального и муниципального); c) тенденции в изменении населения; d) климат, географию, геологию; e) доступность; f) наличие людских ресурсов, фонды, средства для обработки полевых и лабораторных данных; g) межведомственные соображения; h) время на дорогу до лаборатории (для скоропортящихся проб); i) безопасность персонала.

Проект программы взятия проб следует апробировать и оценить на его начальной стадии для обеспечения эффективности и продуктивности выполнения поставленных целей.

2.4.3.1 Параметры качества воды

Параметры, характеризующие качество воды, могут иметь несколько классификаций. Они могут классифицироваться: по физическим свойствам (таким, как температура, электропроводность, цвет, мутность); по неорганическим химическим компонентам (например: растворенный кислород, хлориды, щелочность, фториды, соединения, соля), по органическим химикатам (таким, как фенолы, хлорированные углеводороды, полициклические ароматические углеводороды и пестициды) и по биологическим компонентам как по микробиологическим, таким как фекальные калифера, так и по макробиотическим, таким как черви, планктон и рыбы, которые могут служить показателями экологического здоровья водной среды.
Вторая классификация строится на основе важности определяемых параметров. Это зависит от типа водоема, от намечаемого использования воды и от целей программы мониторинга. Переменные, определяющие качество воды, иногда группируют по двум категориям:

- основные переменные (таблица I.2.7), (UNEP, 2005);
- переменные, связанные с водопользованием:
 - питьевое водоснабжение;
 - орошение;
 - общее количество живых организмов в водной среде.

Третья классификация в большой мере связана с процедурой взятия проб в соответствии с показателями стабильности:

- консервативные (материал не меняется во времени);
- неконсервативные (изменяется во времени, но при соответствующей обработке может сохраняться, по крайней мере, в течение 24 часов);
- неконсервированные (материал быстро изменяется во времени и не может быть стабилизирован).

Характеристики первых двух групп могут быть измерены путем последующего лабораторного анализа.

Таблица I.2.7. Основные переменные ГСМОС/воды

<table>
<thead>
<tr>
<th>Категория качества воды</th>
<th>Переменные ГСМОС</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гидрологические переменные и переменные, связанные с отбором проб</td>
<td>Мгновенный расход</td>
</tr>
<tr>
<td>Физические/химические переменные</td>
<td>Расход воды/уровень (GRF)</td>
</tr>
<tr>
<td></td>
<td>Сумма взвешенных частиц (R)</td>
</tr>
<tr>
<td></td>
<td>Температура pH (GRF)</td>
</tr>
<tr>
<td>Главные ионы</td>
<td>Кальций</td>
</tr>
<tr>
<td>Растворенные соли/ионный баланс</td>
<td>Магний</td>
</tr>
<tr>
<td></td>
<td>Soda</td>
</tr>
<tr>
<td></td>
<td>Калий</td>
</tr>
<tr>
<td></td>
<td>Хлорид</td>
</tr>
<tr>
<td></td>
<td>Фтористые соединения (GW)</td>
</tr>
<tr>
<td>Питательные вещества</td>
<td>Нитраты и нитриты</td>
</tr>
<tr>
<td></td>
<td>Аммиак</td>
</tr>
<tr>
<td></td>
<td>Органический азот, растворенный</td>
</tr>
<tr>
<td></td>
<td>Органический азот, дисперсный</td>
</tr>
<tr>
<td>Органические вещества</td>
<td>Органический углерод, растворенный</td>
</tr>
<tr>
<td></td>
<td>Органический углерод, дисперсный</td>
</tr>
<tr>
<td></td>
<td>БПК</td>
</tr>
<tr>
<td>Микробиология</td>
<td>Фекальные кишечные палочки</td>
</tr>
<tr>
<td></td>
<td>Общее содержание кишечных палочек</td>
</tr>
<tr>
<td>Металлы</td>
<td>Алюминий</td>
</tr>
<tr>
<td>Неорганические составляющие (измеренные как растворенные, дисперсные и/или в виде суммы всех неорганических составляющих; дисперсные концентрации существенны для станций, входящих в систему GRF)</td>
<td>Мышь</td>
</tr>
<tr>
<td>Бор</td>
<td>Ртуть</td>
</tr>
<tr>
<td>Кадмий</td>
<td>Селен</td>
</tr>
<tr>
<td>Хром</td>
<td>Цинк</td>
</tr>
<tr>
<td>Медь</td>
<td></td>
</tr>
<tr>
<td>Железо</td>
<td></td>
</tr>
<tr>
<td>Органические составляющие</td>
<td>Алдикарб</td>
</tr>
<tr>
<td></td>
<td>Альдрин</td>
</tr>
<tr>
<td></td>
<td>Атразин</td>
</tr>
<tr>
<td></td>
<td>Бензол</td>
</tr>
<tr>
<td></td>
<td>2, 4-Дихлорфенол</td>
</tr>
<tr>
<td></td>
<td>ДДТ</td>
</tr>
<tr>
<td></td>
<td>Диплдрин</td>
</tr>
<tr>
<td></td>
<td>Линдан</td>
</tr>
</tbody>
</table>

R — основные переменные только для речных станций
L — основные переменные для станций на озерах и водохранилищах
GW — основные переменные для гидрометрических станций
R, L — основные переменные для станций на реках, озерах и водохранилищах
GRF — важнейшие переменные для станций мониторинга глобального речного потока.
ГЛАВА 2. МЕТОДЫ НАБЛЮДЕНИЙ

2.4.3.2 Качество поверхностных вод

Иногда цели программы точно определяют оптимальное место для отбора проб в речной или озерной системе. Например, для того чтобы определить влияние притока на реку, в которую он впадает, пункты отбора проб необходимо располагать выше и ниже места впадения этого притока. В других случаях место и частота взятия проб могут определяться законами загрязнения водоемов или требованиями определенного использования водных объектов, например разрешение на измерение расхода поверхностных вод может определять детали мониторинга, такие как места отбора проб, количество проб, частота проведения анализов и параметры, необходимые для анализа. Программы по мониторингу качества воды могут быть дополнены активными, но редкими исследованиями качества воды, нацеленными на понимание краткосрочных колебаний параметров качества воды. В некоторых особых случаях могут потребоваться контроль за качеством воды или непрерывные измерения выбранных параметров особыми способами.

Статегия взятия проб различна для разных видов среды и водных объектов, например: для воды, наносов или биоты. Полное перемешивание воды в реке может произойти на расстоянии от нескольких километров до нескольких сот километров от источника загрязнения. Озера могут иметь вертикальную стратификацию по температуре или в результате притока соленой воды большой плотности. Подземные воды отличаются очень медленным водообменом, и на поверхности не видно тех перемен в растворенных веществах, которые происходят внизу.

Если цели исследования касаются влияния деятельности человека на качество воды в бассейне данной реки, бассейн может быть разделен на две части — естественную и подвергшуюся изменению. Последняя может быть впоследствии подразделена на стационарные зоны (скажем, на периоды свыше 10 лет) и зоны, влияние на которые меняется, такие как сельскохозяйственные зоны, зоны проживания людей и промышленные зоны. При изучении кислотных отложений важным фактором является чувствительность земной поверхности к отложениям. На рисунках 1.2.7 и 1.2.8 даны примеры того, как следует располагать пробоотборные станции в озерных и речных системах, чтобы они максимально отвечали своему назначению.

Следующим шагом в выборе места отбора проб будет сбор соответствующей информации о районе проведения мониторинга. Искомая информация включает геологические, гидрологические и демографические аспекты, а также число озер и рек, размеры и местоположение водоносных слоев, положение существующих гидрометрических станций и пунктов определения качества воды, скорости течения, климатические условия в районе водосбора, историю развития, настоящие

Рисунок 1.2.7. Участок мониторинга: реки
Рисунок I.2.8. Участок мониторинга: озера

Информация

Потребности в данных

Сбор данных

Оценка значений качества

Необходимая информация

Контрольное планирование

Возможные участки

Развернутая съемка

Пригодность участка для инспекционных проверок

Выбранные участки

Отбор и анализ проб

Рисунок I.2.9. Схема для выбора участков отбора проб на качество воды

Станция	Критерии
9 | Основной питающий приток озера
10 | Общее качество воды в озере
11 | Водозабор для снабжения крупного города
12 | Вода, вытекающая из озера
и потенциальные муниципальные и промышленные центры, существующие водохозяйства и сбросы, естественные соленые источники, дренажные скважины, планы по ирригации, регулирование стока (дамбы), существующее и планируемое использование воды, стандарты или нормы качества речной и озерной воды, доступность потенциальных участков отбора проб (важно, кому принадлежит земля, дороги, взлетные площадки), наличие электричества, наличие данных о качестве воды. На рисунке I.2.9 показано, какие шаги надо предпринять для выбора участков для отбора проб. Расстояние вниз по реке до места полного перемешивания воды примерно пропорционально скорости течения и квадрату ширины русла реки. Глубина рек обычно сравнительно невелика, поэтому вертикальная однородность достигается недалеко от источника загрязнения. Перемешивание воды по ширине обычно достигается гораздо медленнее. Таким образом, бывает, что на широких реках с быстрым течением на протяжении многих километров от точки поступления загрязнения и вниз по течению реки, полного перемешивания так и не происходит.

Для определения репрезентативности проб в водном сечении реки рекомендуются различные методы, например, шесть проб анализируются в двух экземплярах — в трех местах по ширине реки и на двух глубинах — или пробы берутся на средней глубине через каждую четверть ширины реки, или на других, равных друг от друга расстояниях по ширине реки. Если же нельзя получить репрезентативные пробы, рекомендуется выбрать другой участок, рядом с этим или ниже по течению. Еще одна альтернатива состоит в получении средневзвешенной пробы, составленной из пробы, взятых на вертикалах водного сечения реки.

Продольное перемешивание нерегулярных или циклических сбросов в реку имеет второстепенное влияние на положение мест взятия проб. Это влияние должно быть учтено при определении частоты взятия проб и интерпретации полученных данных.

Частота отбора проб зависит от назначения сети, от сравнительной важности станции для взятия проб, диапазона измеряемых величин и изменчивости во времени интересующих параметров, а также от имеющихся ресурсов. при отсутствии достаточной исходной информации, частота взятия проб принимается произвольно на основе знания местных условий. После того как будет собрано достаточно данных, выбирается такая частота, которая будет отражать наблюдаемую изменчивость. На частоту наблюдений влияет относительная важность станции, а также то обстоятельство, насколько приближаются к критическому уровню концентрации некоторых измеренных веществ.

На озерных станциях рекомендуется отбирать пробы в течение пяти дней подряд в самое теплое время года и в течение пяти дней подряд каждые три месяца. Особый случай представляют озера умеренной зоны, которые подвержены стратификации. В них берут пробы по крайней мере шесть раз в год вместе с дополнительной произвольной пробой в течение следующих периодов: во время открытой воды (без ледового покрова), перед летней стратификацией, после летней стратификации в период перемешивания подо льдом и в период снеготаяния и дождевых паводков. Подобным образом, если возможно, следует брать дополнительные пробы в реках после штормов, во время половодья и дождевых паводков.

Если построить графическую связь параметров во времени, то среди произвольных колебаний можно заметить циклические вариации. Для того чтобы обнаружить циклические явления, необходимо, чтобы интервал между взятием проб был не больше одной трети продолжительности самого короткого цикла, и отбирать пробы следует в течение периода, который был бы по крайней мере в 10 раз больше, чем время самого длинного цикла. Поэтому при начальном обследовании долгосрочные циклы не получают подтверждения, но они станут заметны во время работы сети. Для обнаружения циклических вариаций желательно брать пробы произвольно, т. е. в разные дни недели и в разное время суток.

2.4.3.3 Качество осадков

Обычно участки для взятия проб надо подбирать так, чтобы они давали точную и репрезентативную информацию о временных и пространственных изменениях химических элементов, представляющих интерес. Необходимо принимать во внимание такие важные факторы, как преобладающие направления ветра, источники исследуемых химических соединений, частоту выпадения осадков (дождя, снега, града) и другие метеорологические процессы, влияющие на осадки. Следует также учитывать и местные условия:

а) в пределах 1 000 м от участка взятия проб не должно быть каких-либо движущихся источников загрязнения, например движущегося воздушного, наземного или водного транспорта;

б) в пределах 1 000 м от участка взятия проб не должно быть наземных складов сельскохозяйственных продуктов, жидкого топлива или каких-либо других инородных материалов;

в) пробоотборники должны быть установлены на плоской поверхности земли с ненарушенным почвенным покровом, предпочтительнее с травяным, окруженным деревьями, на расстоянии не менее 5 м от пробоотборника. Поблизости не должно быть разносимых ветром источников загрязнения таких как обработанные поля или немощенные....
дороги. Особенно следует избегать зон сильной турбулентности, т. е. зон сильных вертикальных турбулентных потоков, водоворотов с подветренной стороны гор, обдуваемых ветром горных вершин или крыш зданий;

d) в пределах 5 м от участка не должно быть объектов более высоких, чем пробоотборник;

e) если поблизости имеется объект более высокий, чем пробоотборник, то расстояние, на котором он может находиться, должно быть не меньше чем разница в их высote, умноженная на 2,5. Особое внимание необходимо уделять высотным проводам;

f) коллектор пробоотборника должен быть расположен на высоте не менее 1 м от земляного покрова, чтобы в него попадало как можно меньше песка, пыли или брызг;

g) для автоматических пробоотборников, для их крышек и датчиков, а в ряде случаев и для летнего охлаждения и зимнего таяния требуется электрическая энергия. Если используются электролинии, провода не должны быть над головой; если используются генераторы, то их выхлопные трубы должны находиться далеко и с подветренной стороны от коллектора;

h) рассматривая проблему в масштабе континента, необходимо отметить, что предпочтительнее, чтобы участки отбора проб находились в удаленной сельской местности, вдали от источников загрязнения, не менее чем в 50 км с наветренной стороны и в 30 км в других направлениях.

Не всегда могут быть выполнены все эти условия. Однако в описании станции приведенные рекомендации должны быть учтены; кроме того, необходимо указать точные характеристики каждого участка, выбранного для отбора проб.

Осадки над крупными озерами могут быть не такими сильными, как у берега, и доля крупных частиц в них может быть меньше. Поэтому при отборе проб в середине озера надо установить пробоотборник на буе, на отмели или на небольшом острове. Отбор проб во время дождя, снега или града является наиболее предпочитительным методом пробоотбора осадков. Анализ проб, взятых во время выпадения осадков, позволяет определить загрязняющие вещества, связанные со штормом, ливневыми дождями или снегопадом, а анализ траектории ветра поможет определить вероятные источники загрязнения. Однако этот режим отбора проб отличается большой чувствительностью. Что касается частоты отбора проб осадков, то при ее определении следует руководствоваться теми же статистическими соображениями, которые были приняты во внимание при отборе проб поверхностных вод.

2.4.3.4 Качество отложений

Большинство изложенных в предыдущих разделах критериев отбора проб применимо и к отбору проб отложений. Поэтому здесь будут описаны только некоторые особые рекомендации.

Там, где требуются данные о переносе отложений в реке, участки отбора проб необходимо располагать вблизи водомерных постов, с тем чтобы точная информация о расходе воды в реке могла быть получена в любое время. Следует избегать размещения пробоотборников выше по течению от притоков, поскольку в этих случаях они могут подвергаться влиянию подпора и застоя воды. В реках, слишком глубоких для перехода вброд, участки отбора проб следует располагать под мостом или под гидрометрической люлькой.

Если проба берется с моста, то ее обычно берут на той стороне моста, которая ниже по течению. Пробоотбор в районе высокой турбулентности, например вблизи волнолома, часто бывает нерепрезентативным. Также необходимо обращать внимание на скопления твердых наносов и мусора у волноломов, поскольку это может сильно искажать течение и, следовательно, распределение наносов. Составные пробы, полученные в результате смешивания воды из разных точек отбора по водотоку, могут считаться репрезентативными по среднему расходу наносов, если вода хорошо перемешана.

Для взятия проб отложений в реках с быстрым течением лучшими местами считаются те, где скорость течения минимальна, т. е. на отмелях в середине реки, при повороте или изгибе русла, на отмели или в других защищенных местах.

Участки отбора проб должны быть доступны во время паводков, ибо в это время скорость переноса отложений бывает наибольшей.

При определении пика стока загрязняющих наносов на реках следует рассматривать два случая:

a) отбор проб загрязнения из точечного источника следует проводить во время меженного стока, когда приток загрязнений менее разбавлен;

b) отбор проб загрязнения из рассеянных источников, например от стоков с сельскохозяйственных земель, обработанных удобрениями или пестицидами, следует проводить во время паводков, когда загрязняющие вещества вымываются из почвы.

Если одной из целей является определение количества переносимых отложений в речной системе, то следует иметь в виду, что пик концентрации отложений необязательно соответствует времени пика расходов воды. Кроме того, последовательность больших расходов воды приводит к непрерывно уменьшающимся
значениям пиков расходов отложений — имеет место эффект истощения, происходящий от уменьшения количества материала, способного подвергнуться суспензии.

На озерах базовый пробоотборный участок должен быть расположен в географическом центре озера. Если озеро очень большое (площадь более 500 км²), то в таком случае может понадобиться несколько базовых станций. Если требуется отбор проб донных наносов разных типов, то можно использовать данные акустического обследования (эхолот) как для определения типов поверхностного материала (песок, гравий, глина), так и для определения наличия подповерхностного расслоения. Вспомогательные участки отбора проб следует размещать между базовой станцией и устьем главного притока, или между базовой станцией и источниками загрязнения. Пункты отбора обычно размещают вдоль длинной оси озера и на пересекающихся местами поперечниках. Для приблизительного определения качества наносов в озере среднего размера бывает достаточно трех-пяти станций. Но для статистической достоверности, вероятно, потребуется большее число участков отбора проб.

На частоту пробоотбора в озерах влияет, как правило, низкая концентрация взвешенных наносов. Во время максимума и минимума продуктивности водорослей и во время большого поступления речных наносов следует использовать ловушки наносов.

При повторном отборе проб отложений необходимо учитывать скорости накопления наносов. В зоне умеренно-прохладного климата скорость накопления наносов часто не превышает 0,1–0,2 мм в год, поэтому, если не будет обнаружено нового источника загрязнения, для получения сколь-нибудь ценной информации остаточно проводить повторный отбор проб раз в пять лет.

2.4.3.5 Качество подземных вод

Для планирования отбора проб из водоносного слоя требуется большое количество гидрологических данных — необходимо знать уровни воды, гидравлические градиенты, скорость и направление движения воды. Кроме того, необходимо подготовить схему колодцев, буровых скважин и родников, питающих водоносным слоем, и учесть детали землепользования.

Пробы подземных вод берутся из фильтрующихся вод, открытых колодцев и буровых скважин. Пробоотбор из колодца следует производить только после достаточно длительной откачки воды, чтобы обеспечить забор свежей пробы. Это особенно важно в тех случаях, когда стенки колодца подвержены коррозии. Уже имеющийся действующий колодец обходится дешево, хотя такие колодцы не всегда удобно расположены и не всегда сделаны из незагрязняющих материалов. Колодец, которым пользуются и из которого регулярно откачивают воду, предпочитительнее заброшенного колодца. Заброшенные колодцы, которыми не пользуются, часто находятся в плачевном состоянии, с поврежденными или протекающими стенками и проржавленным насосным оборудованием. В них часто бывает трудно измерить уровень воды, и они небезопасны.

Изменения, происходящие в подземных водах, могут быть очень медленными и могут быть правильно описаны на основании ежемесячных, сезонных и даже ежегодных отборов проб.

2.4.4 Сети для получения оперативных данных

Многие виды гидрологических прогнозов составляются на основе данных, полученных при помощи сетей наблюдений. Информация может включать как данные измерений, так и сведения об эксплуатации водохозяйственных объектов и мероприятиях по предотвращению наводнений. В системе прогнозирования данные основной сети (раздел 2.4.1.3) должны использоваться как широко, насколько это возможно. Задачи прогностической сети определяются следующими факторами:
a) требованиями потребителя в отношении прогнозов в определенных местах и в отношении текущей информации о состоянии водных объектов;
b) плотностью сети, которая необходима для описания гидрологических характеристик и размеров водных объектов;
c) технологий передачи данных в прогностический центр;
d) репрезентативностью наблюдений;
e) информационными средствами для выпуска прогнозов.

Информация об эксплуатации водохозяйственных объектов представляется в виде, определяемом нормальной оперативной деятельностью водохозяйственных организаций, которые предоставляют эту информацию.

Должен быть составлен график передачи сообщений с неавтоматических станций мониторинга в прогностический центр; эти сообщения подразделяются на регулярно передаваемые и передаваемые эпизодически. Регулярные сообщения должны включать ежедневную информацию об уровнях воды, расходах воды, температуре и (там, где это необходимо) ледовых явлениях, а также результаты наблюдений за толщиной льда за каждые 5 или 10 дней, высотой снежного покрова и
запасом воды в снеге. Эпизодические сообщения содержат аварийную информацию о существенных изменениях режима водных объектов, мерах оперативного контроля, а также специально затребованные сообщения, необходимые для определения особенностей развития отдельных гидрологических явлений.

Публикация ВМО Casebook on Hydrological Network Design Practice (Справочник по проектированию гидрологических сетей) (WMO-No. 324) дает примеры значений пространственной плотности пунктов наблюдений разнообразных гидрологических переменных и содержит основные принципы их определения, основанные на временной и пространственной изменчивости этих переменных.

2.4.5 Выбор стратегии создания сети

Помимо поиска возможностей улучшения репрезентативности существующих гидрологических сетей, гидрологические службы должны разрабатывать более совершенные стратегии проведения мониторинга. В выбранных для этой цели бассейнах деятельность по сбору гидрометрической информации должна быть скоординирована с программами наблюдений за стоком наносов, качеством воды, метеорологическими характеристиками и условиями обитания живых организмов (раздел 2.4.1.4). Например, для исследования перемещения загрязнения взвешенными наносами необходимы сведения об источниках этого загрязнения, а также путях движения и происхождении тонкодисперсных частиц. Для этого, в свою очередь, требуется понимание процессов формирования стока и наносов. Такой комплексный мониторинг необходим для интерпретации данных о концентрации загрязняющих веществ или для расчета их содержания на всех стадиях деятельности гидрологических служб от планирования научных исследований до подготовки отчетных материалов.

Для достижения максимальной эффективности всех программ по сбору данных о воде необходимо разработать комплексное планирование соответствующих сетей. Необходимо отметить, что определение характеристик разрабатываемой сети с учетом различных перспектив ее развития требует значительных усилий. Это же можно сказать и о координации сбора гидрологических данных на бассейне (т. е. данных об осадках, стоке, подземных водах и качестве воды), необходимом для того, чтобы при возникновении потребностей в будущем уже имелись бы в наличии адекватные данные.

Действующие программы мониторинга могут быть улучшены путем использования дополнительных материалов. Так, например, результаты изучения источников речных наносов и морфологических изменений речных русел (Church and others, 1989; Carson, 1987) дополняют данные стандартных наблюдений по определению режима реки. Эти знания, которые невозможно получить только на основании проведения стандартного мониторинга, используются в рыбном хозяйстве, при гидротехнических изысканиях и изучении качества воды.

С другой стороны, при проектировании городских дренажных систем все более важно учитывать вопрос качества воды. При составлении соответствующих программ мониторинга должны быть предусмотрены вопросы отбора проб через короткие интервалы времени, комплексный мониторинг осадков и стока, и очень быстрая выдача информации применительно к используемым данным. Эти условия резко отличаются от тех, которые обеспечиваются проведением обычного мониторинга. Использование компьютерных моделей может быть рассмотрено в качестве дополнительной стратегии улучшения информации, получаемой по данным мониторинга. В определенных случаях проектирование сети мониторинга может быть улучшено по результатам моделирования.

2.5 СБОР ДАННЫХ

2.5.1 Выбор местоположения пунктов наблюдений

По окончании первой фазы проектирования сети определяется общее местоположение участков по сбору данных, а также типы приборов. После этого в пределах намеченного участка выбирается самое удобное место, которое лучше всего отвечало бы требованиям, перечисленным в разделах 5.3.2.1 и 5.4.2 данного тома. Для обеспечения необходимого качества данных могут понадобиться изменения в выбранном участке, например очистка его и укрепление контрольного створа.

Когда место выбрано и приборы установлены, проводится сбор двух типов данных — подробное описание участка и его расположения и выбранные для выполнения виды гидрологических наблюдений. После открытия пункта наблюдения установленное оборудование вводится в действие и функционирует согласно существующим стандартам. Обычно это включает выполнение необходимых плановых проверок и обслуживания, которое обеспечило бы надежность получаемой информации, а также проведение обычных контрольных измерений и тарирования для обеспечения требуемой точности данных.
2.5.2 Идентификация станции

Для обеспечения подробной исторической документации по сбору данных на станции необходимо учитывать два аспекта — организацию системы идентификации и архивацию описательных данных.

2.5.2.1 Идентификация участков сбора данных

Каждый постоянный пункт наблюдений должен получить идентификационный код, который в дальнейшем будет использован для обозначения всех данных и любой другой информации, относящейся к данному пункту. Такие коды обычно имеют цифровой вид, но могут быть и буквенно-цифровыми.

Часто в одной стране или в регионе станциями по сбору данных руководит несколько служб или учреждений, поэтому принята всеми заинтересованными сторонами единая система идентификации облегчит обмен информацией, а также координацию деятельности по сбору данных. Выбор региона должен определяться водосборными бассейнами или климатическими зонами, и часть кода участка должна отражать его местоположение в регионе.

Код участка может представлять собой просто порядковый номер, который дается станции при ее учреждении. Идентификация пунктов наблюдений, например в ранее существовавшем Канадском национальном банке данных о качестве воды (NAQUADAT), представляла собой сложную систему, предназначенную для компьютерной обработки. Она имела 12-значный буквенно-цифровой код, который являлся ключевым элементом в хранении и выдаче данных в компьютерной системе. Этот номер состоял из нескольких подразделов (UNEP/WHO, 1996):

a) тип воды: двузначный цифровой код, показывающий, откуда взята вода для пробы, например из ручья, реки или осадков. Эти значения кода могут быть дополнены другими видами водной среды; перечень всех текущих кодов приводится в таблице I.2.8;

b) провинция, бассейн и бассейн притока: три пары букв и цифр, идентифицирующих провинцию, бассейн и бассейн притока;

c) порядковый номер: четырехзначное число, которое обычно присваивается региональным офисом.

Например, номер станции 00BC08NA0001 означает, что пункт отбора проб находится на реке, расположенной в провинции Британская Колумбия, в бассейне 08, в бассейне притока NA и имеет порядковый номер 1. Станция 010N21E0009 находится на озере, в провинции Онтарио, в бассейне номер 02, в бассейне притока 1E и ее порядковый номер — 9.

В ВМО приняли кодовую систему идентификации станций (Moss and Tasker, 1991), которая подобна пунктам (b) и (c) системы NAQUADAT.

Другая хорошо известная кодовая система для пунктов отбора проб — это индекс по месту на реке (в милях), используемая Агентством США по защите окружающей среды как часть системы STORET. В этой системе местоположение пункта отбора проб определяется его расстоянием от устья реки и ее гидрологической связи с устьем речной системы. Она включает коды больших и мелких бассейнов, номера пограничных рек, направление течения и уровень водотоков, расстояние в милях до слияния рек, а также код идентификации того уровня реки, где расположен пункт отбора проб.

2.5.2.2 Описательная информация

Во многих случаях ценность информации возрастает, если потребитель может соотнести ее с исторически подробностями ее сбора как составной части процесса получения метеоданных. С этой целью регистрационные архивы станций должны содержать подробности работы каждой станции. Степень детализации, разумеется, может изменяться в зависимости от наблюдаемых параметров. Типичная информация обычно включает: название станции и подробности ее расположения; тип станции; связанные с ней станции, их организацию, период эксплуатации, учредителя, наблюдателей и руководство станции; высоту над уровнем моря; частоту наблюдений; период ее работы; точное описание установленного оборудования. Следует включить также дополнительную информацию, характерную для данной станции. Отобранная информация из этого текстового файла должна регулярно приобщаться к выходным данным (глава 10).

Исторические данные с более подробной информацией должны быть готовы для выдачи их в случае необходимости (глава 10). И опять же степень детализации будет зависеть от типа наблюдений. Сточная станция может включать такие подробности, как указание синоптической зоны, заметки об осадках и испарении, геоморфологических особенностях, форме рельефа, растительности, землепользовании и прекращении землепользования, а также технические подробности устройства самой станции. Типичные компоненты такого архива могут включать описание станции, подробную схему участка, карту расположения участка в регионе, подробное описание участка и региона. Примеры формата таких архивных документов можно найти в публикациях ЮНЕП (2005) и Министерства окружающей среды Канады (1983). Пример документации такого формата приведен на рисунке 1.2.10.
Таблица I.2.8. Коды NAQUADAT для всех типов водной среды

<table>
<thead>
<tr>
<th>Тип водной среды</th>
<th>Код</th>
<th>Подтип</th>
<th>Код</th>
</tr>
</thead>
<tbody>
<tr>
<td>Поверхностные воды</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Речное русло</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Озеро</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Эстуарий</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Океан–море</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Пруд</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Заполненное водохранилище</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Залив</td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Канава</td>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Сток</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Неизвестный</td>
<td>9</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Подземные воды</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Колодец–отстойник</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Источник</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Пьезометрический колодец</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Дренаж керамическими трубами</td>
<td>4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Болото</td>
<td>5</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Водопроводная вода</td>
<td>6</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Неизвестный</td>
<td>7</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Сточные воды, очищенные и неочищенные</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Промышленные</td>
<td>2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Муниципальные</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Горнорудные</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Сток от животноводства</td>
<td>5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Неизвестные</td>
<td>6</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Осадки</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Дождь</td>
<td>3</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Снег</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Град</td>
<td>5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Смешанные осадки</td>
<td>6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Выпадение сухих осадков</td>
<td>7</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Обработанные запасы воды</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Муниципальные</td>
<td>4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Промышленные</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Горнорудные</td>
<td>6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Частные (индивидуальные)</td>
<td>7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Другие коммунальные работы</td>
<td>8</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Муниципальное распределение</td>
<td>9</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Муниципальная обработка для промышленности</td>
<td>10</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Остатки после обработки</td>
<td>11</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Прочие</td>
<td>12</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Промышленные стоки</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ливневые стоки</td>
<td>5</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Первичный водозабор</td>
<td>6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Первичный сброс</td>
<td>7</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Конечный сброс</td>
<td>8</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Остатки обработки</td>
<td>9</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Особые проблемы</td>
<td>10</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Прочие</td>
<td>11</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Муниципальные стоки</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Необработанные</td>
<td>6</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Сток первичного отстоя</td>
<td>7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Сток вторичного отстоя</td>
<td>8</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Обычные первичные сбросы</td>
<td>9</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Обычные вторичные сбросы</td>
<td>10</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Сброс обработанной воды</td>
<td>11</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Дезинфицированные сбросы</td>
<td>12</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Необработанные осадки</td>
<td>13</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Наналезационные стоки</td>
<td>14</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Прочие</td>
<td>15</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Различные сточные воды</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Неочищенная вода</td>
<td>8</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Первичного отстоя стоки</td>
<td>9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Вторичного отстоя стоки</td>
<td>10</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Обычные первичные сбросы</td>
<td>11</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Обычные вторичные сбросы</td>
<td>12</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Сброс обработанной воды</td>
<td>13</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Дезинфицированные сбросы</td>
<td>14</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Необработанные стоки</td>
<td>15</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Наналезационные стоки</td>
<td>16</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Прочие</td>
<td>17</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

2.5.2.2.1 Описание станции

Точное описание станции должно включать указание расстояний до всех важных пунктов. Очень важно, чтобы все эти пункты были постоянными и четко идентифицированными. Например: «5 м на северо-запад от молодого ивняка» — недостаточное описание участка наблюдений. Пример правильного описания — следующий: «30 м вниз по течению от моста Леди Абердин (автомагистраль 148), между Холлом и Пойнт Гатино и в 15 м от причала, находящегося на левой стороне, вниз по течению». Если в наличии имеются неавтоматизированные устройства глобального позиционирования, то на станции должны быть определены и записаны географические координаты места отбора проб. Также должны быть указаны даты учреждения станции и начала сбора информации.
Для станций, на которых выполняются измерения речного стока и параметров качества воды, информация о местоположении должна включать описание водоотока выше и ниже станции. В нем входят глубина воды, описание обоих берегов и материалов, слагающих дно русла. В описании водного объекта должны быть указаны все особенности морфологии, которые могут повлиять на режим стока воды или на ее качество. Такие особенности могут включать изгибы реки, расширение или сужение русла, наличие островов, притоков, перекамерий и т. д. Описания расположения станций должны отвечать сезонным изменениям, которые могут затруднять обзор данных в течение года. Дополнительная информация относительно озера может включать площадь водной поверхности, глубину дна, максимальную и среднюю глубину, объем, время наполнения.

Также должны быть указаны дополнительные сведения о естественных или вызванных деятельностью человека условиях, которые могут сказать на данных наблюдений. Необходимо описать, кроме того, имеющиеся места и ожидаемые в будущем нарушения земной поверхности и источники загрязнения, например лесные пожары, постройка дорог, разработка старых шахт, а также существующие и ожидаемые характеристики землепользования.

2.5.2.2.2 Подробная схема расположения станции

Необходимо подготовить план расположения и разбики станции (включая расстояние, выраженное в соответствующих единицах) относительно местных ориентиров и постоянных точек отсчета, таких, как реперов (рисунок I.2.11). На чертеже должны быть отчетливо указаны пункты отбора проб или измерений и расположение оборудования.

2.5.2.2.3 Карта

Должна быть составлена крупномасштабная карта расположения станции (рисунок I.2.12), которая показывает ее расположение относительно дорог, автомагистралей и городов. Сочетание карты и схемы расположения
станции должно обеспечить полную информацию об ее местоположении. Исследователь, который впервые едет на станцию, должен иметь достаточно информации, чтобы легко и уверенно ее найти.

2.5.2.2.4 Координаты

Географические координаты указывают в виде широты и долготы в универсальной системе координат или другой системе координат, например, универсальной поперечной проекции Меркатора (UTM). Если участок находится на воде, то указывается также его расположение вверх по течению от точки отсчета, например от эталонной станции или устья реки. Следует, по возможности, указывать государственные эталонные сети. По международной системе GLOWDAT (т. е. для станции банка данных ГСМОС/Вода (UNEP, 2005)) каждая запись представляет собой код ВМО для октанта земного шара в северном полушарии: 0, 1, 2 и 3 для 0–90° з. д. и 90–180° з. д., 180–90° в. д. и 90–0° в. д. соответственно (WMO-No. 683). Для южного полушария коды, соответственно, таковы: 5, 6, 7 и 8 для 0–90° з. д., 90–180° з. д., 180–90° в. д. и 90–0° в. д. (WMO-No. 559).

Значения широты и долготы следует получать с помощью глобальной системы определения местоположения или, если это невозможно, из топографических карт масштаба 1 : 50 000 или 1 : 250 000. На последней карте пункты могут быть расположены с точностью до ± 200 м, а на карте 1 : 50 000 — с точностью до ± 40 м (WMO-No. 559). Если имеются навигационные карты, то лучше воспользоваться ими, поскольку они точнее топографических.

2.5.2.2.5 Порядок описания

Порядок описания пункта для измерения расхода и качества воды рекомендуется начинать с названия реки, водотока, озера или водохранилища, после чего указать их положение (например, вверх или вниз по течению) и его расстояние до ближайшего населенного пункта, важного моста, шоссейной дороги или других постоянных ориентиров (с точностью не менее 0,1 км). Также необходимо дать название провинции, территории или других геополитических подразделений.

Для обеспечения исторического описания пункта наблюдений и репрезентативного района, который он характеризует, необходимо добавить информацию, касающуюся изменения на участке, включая изменение в приборах. В главе 10 содержится пример рекомендуемого формата для такой информации.

2.5.3 Частота и время посещения станции

Частота и время посещения станции для снятия показаний определяются предполагаемым использованием этих данных и должны быть достаточными для обеспечения наблюдений в течение всего времени. Таким образом, целью посещений станции является проведение наблюдений, сбор данных и техническое обслуживание этой станции.

Если переменная, которая является объектом исследования на участке, меняется быстро, то посещения неавтоматических станций должны быть более частыми, чтобы получить ценную информацию. В этих случаях, при наличии фондов и квалифицированного персонала, лучше установить автоматическую записывающую аппаратуру. Это относится, в первую очередь, к осадкам и уровням воды, где для гидрологических целей желательны более частые наблюдения во время ливней, паводков и приливных явлений.

2.5.3.1 Неавтоматические станции

Имеется особый смысл в том, чтобы на климатических и гидрометрических станциях наблюдения проводились в определенные синоптические сроки. ВMO
рекомендуется (см. публикацию ВМО-№ 544) проведение наблюдений за погодой на синоптических станциях с дискретностью 3 или 6 часов в 0000, 0300, 0600, 0900, 1200, 1500, 1800, 2100 Международного скоординированного времени (МСВ). В большинстве стран такие станции являются ключевыми станциями в метеорологических и климатологических программах наблюдений. Если наблюдателю надо провести три наблюдения в день, то самым удобными синоптическими часами для этого будет время утром, вечером и около полудня. Для станций, где в день проводится только одно или два наблюдения, надо выбрать для этого определенные часы.

На станциях, где проводится одно наблюдение в день, рекомендуется проводить его утром.

Некоторые водотоки, например небольшие горные реки, могут испытывать суточные колебания уровня воды в течение некоторых сезонов. Наблюдения должны совершаться несколько раз в день на новых станциях, чтобы подтвердить, что единичный отсчет показаний прибора действительно отражает суточный уровень воды. Также маленькие реки могут проявлять «вспышечное» поведение в ответ на ливни. Для того чтобы с достаточной точностью определить гидрограф, должны быть получены дополнительные показания уровня воды. Измерения могут также быть проведены во время отбора проб для определения качества воды.

Желательно проводить регулярные наблюдения в синоптические сроки, хотя иногда это не представляется возможным. В таких случаях важно, чтобы наблюдения проводились каждый день в одно и то же время, и это время должно быть записано в формате МСВ или в местном стандартном времени, используя деление суток на 24 часа. Если «летнее время» (время экономии дневного света) вводится на часть года, необходимо принять меры, чтобы наблюдения проводились в тот же час по МСВ, как и до перехода на «летнее время».

Запись времени наблюдения должна быть сделана после проведения наблюдения. Наблюдение должно быть выполнено, в течение 10 минут до наступления соответствующего срока. Однако, не зависимо от того, в стандартные или нестандартные сроки проводятся наблюдения, важно, чтобы фактическое время проведения было записано очень тщательно. На приливных участках реки время наблюдений должно соотноситься с приливным циклом.

2.5.3.2 Автоматические станции

Частота и время посещения таких станций, оборудованных самописцами, определяются продолжительностью того периода, когда станция может функционировать самостоятельно без обслуживания. Например, некоторые самописцы длительной записи дождя делают записи на ленты, рассчитанные на неделю, и, следовательно, требуют еженедельных посещений для того, чтобы снимать и заменять ленты. Другие приборы могут хранить записи данных наблюдений гораздо дольше и поэтому требуют менее частых посещений. Необходимо найти правильное соотношение между частотой посещения станций и качеством записанных данных. Слишком долгие перерывы между посещениями могут привести к частым поломкам, порче приборов и, следовательно, к потере информации, вместе с тем частые посещения дороги требуют большей затраты времени. Проводятся различные исследования для установления эффективности затрат и продуктивности сбора информации. Подробности приведены в публикации Economic and Social Benefits of Meteorological and Hydrological Services (Социально-экономическая эффективность гидрометеорологического обслуживания) (WMO-No.733).

Частота посещений может также определяться точностью собираемых данных. В некоторых записывающих устройствах может нарушаться соответствие между наблюдаемыми переменными и записанной величиной. Примером этому может служить нестабильная зависимость между уровнем и расходом воды. В таких случаях требуется периодическое посещение станции для перетарировки оборудования, используемого для выполнения измерений.

2.5.3.3 Новые технологии

Внедрение устройств регистрации данных и передачи данных по телефонной или спутниковой связи могут оказать большое влияние на частоту проверок станций и частоту сбора данных (раздел 2.5.6). Однако следует отметить, что для обеспечения качества информации требуется регулярное обслуживание станций.

2.5.4 Обслуживание участков наблюдений

Для того чтобы качество получаемой информации было адекватным, на участках измерений необходимо регулярно проводить следующие мероприятия, которые осуществляются непосредственно наблюдателем, ответственным за участок. Однако изредка они могут выполняться инспектирующим лицом (раздел 9.8.4).

На всех наблюдательных участках необходимо:

a) содержать приборы в хорошем состоянии;
b) заменять приборы или улучшать их состояние по мере необходимости;
c) считывать и записывать наблюдения;
d) проводить рекомендуемые проверки полученных записей;
e) проводить общую проверку всего оборудования, например линий передач;
f) проверять и обслуживать участок в соответствии его назначением;
g) вести запись всей вышеназванной деятельности;
i) описывать изменения в землепользовании или состоянии растительности;
j) очищать все части оборудования от зарастания и загрязнения.

На речных гидростворах следует:
a) по мере надобности проверять устойчивость берегов;
b) по мере надобности проверять уровень и состояние створных знаков;
c) по мере необходимости проверять и держать в хорошем состоянии устройства для измерения течения (гидрометрические люльки и др.);
d) по мере необходимости проверять и ремонтировать контрольные сооружения;
e) регулярно проводить съемки живого сечения и фотографировать значительные изменения на станции после каких-либо явлений природы или в связи с переменами в растительности или использовании земли;
f) вести конспективную запись всей вышеперечисленной деятельности и указывать ее результаты;
g) инспектировать районы вокруг или выше участка и фиксировать любые значительные изменения в использовании земли или другие изменения, имеющие отношение к гидрологическим характеристикам.

Подробную информацию можно найти в Manual on stream gauging (Наставление по измерению расхода воды) (WMO-No. 519).

Из-за непредсказуемой природы наводнений измерение паводков и половодий не может быть запланировано как часть общей инспекционной поездки. План действий во время наводнений должен составляться перед началом сезона и должен включать приоритетные створы и типы требуемой информации. Если на гидросторе потребуется измерение паводка или половодья, к этому надо готовиться заранее во время предшествующего сухого сезона, чтобы быть готовым во время наводнения.

Подготовка требует принятия следующих мер:
а) обновить подходы к участку наблюдений (в случае необходимости сделать площадку для вертолета);
b) обеспечить провизией временный лагерь на участке;
c) подготовить и проверить измерительное оборудование;
d) подготовить оборудование, защищенное от наводнений, например самописцы уровня воды.

После прохождения пика паводка или половодья особое внимание требуется уделить безопасности и защищенности пункта наблюдений и восстановлению обычного режима работы оборудования на площадке. В некоторых случаях потребуется переоборудование и перестройка участка. При выполнении этой работы необходимо принимать во внимание информацию, полученную после прохождения наводнения.

2.5.5 Наблюдения

На всех пунктах наблюдений значение измеряемой характеристики сначала должно быть получено, затем закодировано или записано, и, наконец, передано. Примеры компонентов сбора данных отображены в таблице I.2.9.

2.5.5.1 Неавтоматические станции

Наблюдатели должны быть обеспечены, как минимум, полевыми записными книжками и/или станционными журналами, куда вносятся записи по мере проведения наблюдений. Наблюдатель должен также получить бланки, которые позволили бы ему вести записи ежедневно, еженедельно, раз в две недели или раз в месяц, в зависимости от установленных правил. Полевая записная книга или станционный журнал должны всегда храниться у наблюдателя на случай, если пересылаемые материалы потеряются в пути.

Бланки для передачи сведений должны быть составлены таким образом, чтобы в них было легко переписывать результаты наблюдений из полевой книжки или станционного журнала. Удобно, если страницы бланка соответствуют страницам полевой книжки. По крайней мере, различные элементы в этих документах могут быть в тех же колонках и графах. В журнале, а возможно и в бланке для передачи сведений, должно быть оставлено место для изменений или поправок первоначальных записей.

Другой вариант ведения книжки записей — использование копировальной бумаги, вложенной между страницами, это облегчает подготовку копии, которую можно будет оставить на местной станции. Такой способ не очень практичен, поскольку влага может легко уничтожить или серьезно испортить сделанные записи. В случае автоматической обработки данных, формы подачи сведений должны предусматривать запись кодируемой информации, пригодной для компьютера.

Ценность данных может быть значительно увеличена или уменьшена в зависимости от применяемых стандартов сопровождающей документации. Наблюдателям рекомендуется давать свои комментарии по поводу тех внешних факторов, которые могут влиять
Глава 2. Методы наблюдений

Получение данных

Восприятие

1. Зрительное: Измеритель уровня воды, земле
пользование, описание участка, состав почвы и т. д.

2. Механическое: Осадкомеры, термометры, вертушки, инфилтрометр, измеритель уровня воды

3. Электрическое: Термистор, радиометр, датчики давления, зонд проводимости, кодирующее устройство

Запись

1. Полевая книжка: Текстовое описание и элементы или величины параметров

2. Лист полевых данных: Вопросы, предназначенные для частичного текстового описания и значения элементов или параметров Может быть заранее закодированы для ввода в компьютер

3. Графики: Ленты самописца с непрерывной записью значения элемента

4. Средства, совместимые с компьютером:
 a) неавтоматическая запись: формы для нанесения отметок формы множественного выбора
 b) автоматическая запись: твердотельная память

Передача данных

1. Неавтоматическая: полевые наблюдатели почтовые службы телефон

2. Автоматическая (телеметрия): телефон специальные наземные линии радио спутник интернет сети мобильной связи

Примечание. Таблица относится к элементам или параметрам, наблюдаемым в поле. Имеются особые группы данных, например для почв и для качества воды, там, где проводится лабораторный анализ или физический отбор проб. Здесь система сбора данных почти неизменно будет следующей:

a) механический отбор проб;

b) ввод данных в полевую книжку или лист полевых данных.
2.5.5.2 Автоматические станции

На автоматических записывающих станциях наблюдения записываются в графической или цифровой форме. Однако при посещении станции для получения данных или для ее обслуживания необходимо регистрировать следующие данные:

a) идентификационный номер пункта наблюдений;
b) наблюдения, полученные из независимых источников (например, по водомерной рейке, общее количество собранных осадков);
c) особые замечания по работе записывающих механизмов, включая их состояние, текущее показание и время.

При каждой проверке необходимо заполнить специальный инспекционный лист станции. Данные могут быть записаны на твердотельные накопители или на перфоленту. В окончательном виде данные можно получить при помощи компьютера, когда съемная память перфоленты используется в качестве носителя информации. Однако портативные компьютеры также могут быть использованы для считывания данных напрямую с записывающего устройства и их проверки еще до ухода со станции, что позволяет сразу же произвести необходимый ремонт или другие изменения.

Однако регистрирующее устройство производит запись наблюдаемых характеристик через определенные интервалы времени, запрограммированные пользователем. Микропроцессорные регистрирующие устройства допускают сжатие данных и вариации времени наблюдения. Если выполняются наблюдения нескольких параметров исследуемого процесса, микропроцессорное регистрирующее устройство может их скоординировать. Например, данные о выпадении осадков можно записывать каждые 5 минут, а можно фиксировать наполнение ведра, данные об уровне воды — при изменении уровня более чем на 1 см, а параметры качества воды — когда уровень воды изменяется на 10 см и/или ежесуточно.

При использовании графических самописцев сбор данных идет непрерывно, и требуется их обработка в камеральных условиях. Комментарии следует записывать непосредственно на ленте самописца или в инспекционном листе (если обнаружены какие-либо ошибки). Если используются цифровые самописцы, то также необходимо проводить еще и независимые полевые наблюдения, которые следует записывать при каждом посещении пункта наблюдений.

После того как станция проработала значительный период времени, частоту и время инспекций следует изменить с учетом возможностей оборудования и в связи с необходимостью получения данных с этого участка. В некоторых случаях следует рассмотреть возможность непосредственного получения данных в реальном масштабе времени по различным каналам связи как более дешевого метода сбора информации, по сравнению с регулярными посещениями пункта наблюдений (раздел 2.5.6).

2.5.5.3 Передача информации в реальном масштабе времени

Существует много автоматических и неавтоматических станций, от которых требуется получение данных в реальном масштабе времени. Это происходит, например, при эксплуатации водохранилищ, при выпуске прогнозов и предупреждений о наводнениях и в ряде других случаев, где этот путь является экономически эффективным методом сбора данных.

Полученные наблюдателями в реальном времени данные должны быть переданы по существующим каналам связи, например по радиосвязи или общественной телефонной системе в соответствующее агентство. Точно также должны передавать данные наблюдений и автоматические станции. Преимущество самописцев заключается в том, что они могут быть приспособлены и оборудованы для передачи данных об изменениях параметров через определенные интервалы времени. Они могут также по запросу заказчика определять текущую ситуацию и переустанавливать интервалы наблюдений. Регистрирующие устройства могут давать информацию о емкости памяти записывающего устройства и о состоянии энергообеспечения. В этих случаях можно разработать процесс автоматического контроля качества.

2.5.5.4 Инструкции для наблюдателей

Все наблюдатели должны получить четко составленные инструкции. Они должны содержать рекомендации и указания по следующим вопросам:

a) краткое описание приборов с чертежами;
b) стандартный уход и содержание приборов и меры, которые необходимо принимать в случае их поломки и серьезной неисправности;
c) процедуры проведения наблюдений;
d) процедуры проведения стандартных наблюдений;
e) критерии начала и окончания, а также частота специальных наблюдений, проводимых за рамками обычного расписания (например, за уровнем воды в реке, когда этот уровень выше ординара);
f) процедуры по проверке времени и нанесении контрольных наблюдений на ленты на станциях с самописцами;
g) заполнение полевых книжек и станционных журналов;
h) заполнение бланков отчетов, включая и методы расчета средних величин и общей суммы с соответствующими примерами;
Глава 2. Методы наблюдений

1.2-45

1) отправка отчетов в центральный офис;
2) особый уход за оборудованием для станций, передающих данные в реальном масштабе времени.

Такие письменные инструкции должны сопровождаться устными разъяснениями инспектора, которые он дает наблюдателю при установке оборудования и затем через определенные периоды времени.

Эти разъяснения должны подчеркивать важность регулярных наблюдений и содержать краткую информацию о том, как данные наблюдений используются при изучении водных ресурсов, в гидрологических прогнозах и при контроле паводков. Отдельно необходимо обсудить проведение любых специальных наблюдений, которые могут понадобиться в какие-то особые периоды, например во время прохождения паводков или при подготовке специальных отчетов. Наблюдателям следует напомнить, чтобы они не забывали указывать на бланках название станции, дату и свою подпись. Следует также подчеркнуть, что необходимо немедленно сообщать о неполадках в оборудовании или о каких-то серьезных изменениях на наблюдательном участке.

На станциях с автоматической записывающей аппаратурой, наблюдателям во время проведения инструктажа следует объяснять методику замены лент и методику проведения проверки наблюдений. Эти инструкции должны подчеркивать важность приключений на лентах, которые могут понадобиться при обработке. Сюда входит идентификация станции, время включения самописца, время его отключения, показания контрольного водомерного поста и любые другие примечания, которые в будущем облегчат расшифровку записей.

На станциях со штатным персоналом, сотрудников следует обучать чтению лент и работе с самописцами (записывающими приборами). Для таких станций необходимо тщательно разработать инструкцию и методику чтения данных с лент и заполнения отчетных бланков. Однако на многих станциях, где персонал недостаточно обучен, ему нельзя поручать такую ответственную работу, как чтение данных с лент самописца. В таких случаях цифровые или графические записи следует отсылать для обработки в центр.

2.5.6 Системы передачи информации

2.5.6.1 Общие положения

За последние годы требования к гидрологической информации значительно усилились, и в государственные сети были включены системы с автоматической передачей гидрологических наблюдений. Это привело к необходимости разработки кодов, облегчающих форматирование данных для передачи наблюдений и распространения прогнозов. Гидрологические коды рассматриваются в разделе 2.3.2. Ниже приводится перечень возможностей систем передачи информации:

а) неавтоматическая станция: наблюдатель отсылает данные в центр по почте или сообщает их по телефону или по радио, согласно предварительной договоренности;

б) автоматическая/полуавтоматическая станция: центр запрашивает отдаленные автоматические станции и тут же получает ответы в виде конкретных величин по телефону, с использованием сети Интернет, по радио, по радиотелефону или через спутник. В центре может быть установлена аппаратура, обеспечивающая автоматический набор номера телефона, которая позволяет проводить серию таких телефонных звонков;

в) автоматические станции, запрограммированные на определенное время: автоматическое оборудование запрограммировано на выдачу информации после отдельного единичного наблюдения и/или наблюдений, учитывающих в запоминающем устройстве;

г) автоматический показатель события: станция передает автоматически по радио, телефону, с использованием сети Интернет или через спутник то изменение, которое имело место в переменной (например, изменение на каждый сантиметр уровня воды);

д) автоматическая станция: данные непрерывно передаются и непрерывно записываются в центральном офисе.

2.5.6.2 Системы связи

Возможные системы передачи:

а) специальные наземные линии — применяются на сравнительно коротких расстояниях, где нельзя использовать коммерческие линии;

б) коммерческие телефонные и телеграфные линии — всюду, где можно, используются телефонная и телеграфная системы. Существующее оборудование обеспечивает автоматическое получение данных в гидрологическом центре. Измерения и команды передаются из отдаленных участков в центр и обратно;

в) коммерческие сети сотовой связи — постоянно растущее покрытие этих сетей вместе с оборудованием, которое становится лучше и надежнее, делают их интересным и менее дорогим способом передачи данных с пункта наблюдений в центральный офис. Комбинация надежности и низкой стоимости делает их наиболее подходящими для сбора данных с неоперативных станций, с участков, которые ранее считались отдаленными, и для передачи с использованием коммерческих средств. Мобильные системы могут быть использованы так
ж, как и стандартные телефонные линии и могут продолжать функционировать во время экстремальных ситуаций, когда телефонные линии выходят из строя;

d) прямая радиосвязь — используются там, где нельзя обойтись наземными линиями, или когда радиореле- ния или естественные препятствия мешают про- тянуть провода. Радиопередатчики могут быть использованы на расстояниях от нескольких кило- метров до сотен километров, в зависимости от моности передатчика и от частоты носителя. При более высоких частотах передатчик и приемник должны иметь свободный диапазон для передачи. Это ограничивает дальность связи без про- межуточных станций расстоянием, равным 50 км. Во всех случаях установка и работа радиопередатчиков подчиняется государственным и международным правилам;

e) спутниковая связь — передача данных через спут- ник может осуществляться двумя способами: передача данных, полученных при помощи дат- чиков, установленных на спутнике (например, изображений), или использование спутника для передачи данных с далеких наземных станций на центральные приемные установки. В настоя- щее время способы наблюдения и передачи (или телеметрии) данных со спутников развиваются очень быстро; данные при этом можно получить либо непосредственно с космического спутника, либо через центральный банк данных;

f) Интернет — использование сети Интернет и IP- телефонии в различных формах, включая использо- зование сетей мобильной связи, является интерес- ным и наименее доротим способом отправки дан- ных, особенно если нужно передать большой объем данных или необходима непрерывная передача. Интернет-связь осуществляется разнообразными путями физической связи, включая и мобильные и обычные телефонные сети. Это делает ее более надежной. В системах, состоящих из большого числа пунктов наблюдений, это также сокращает время поиска и делает систему связи в главном офисе намного проще.

2.5.6.3 Факторы, влияющие на выбор системы передачи информации

Рассматривая возможности использования автоматической передачи данных в любой измерительной системе, необходимо учитывать следующее:

a) скорость получения данных, что зависит от следу- ющих факторов:

i) скорость изменений измеряемой переменной;

ii) промежутки времени между наблюдением и получением данных обычными средствами по сравнению с системами автоматической передачи;

iii) срочность получения данной информации, необходимая для предупреждений и прогнозов;

iv) выхода от прогнозов, выпущенных на осно- вании данных телеметрии, и убытков, вызван- ных недостатком или задержкой прогнозов;

v) преимущества радио- и спутниковой пере- дачи по сравнению с наземными линиями во время штормов и наводнений, когда эти бедства могут вывести из строя средства телекоммуникаций в то время, когда данная информация крайне необходима;

b) доступность пунктов наблюдений для контроля качества и обслуживания;

c) надежность записывающих устройств, т. к. в суро- вых климатических условиях эксплуатация меха- нического оборудования бывает очень затруднена. В этих случаях надежное записывание и переда- вать информацию с использованием электроники. Такая система, кроме того, позволяет проводить непрерывную проверку датчиков;

d) укомплектованность штата для работы, обслужи- вания и снабжения — важно рассматривать все эти аспекты в процессе планирования и понимать, что каждый отдельный проект имеет свои особенности. Необходимо тщательно рассмотреть все альтернативные решения, оценить их полезность и требуемые затраты прежде, чем принять оконча- тельное решение. При проектировании системы автоматической передачи информации в вопро- сах комплектования штата необходимо учесть следующее:

i) датчики и кодирующее оборудование;

ii) системы передачи;

iii) приемное и декодирующее оборудование.

На стадии проектирования все эти компоненты сле- дует рассматривать в совокупности. Это очень важно, поскольку особые характеристики какого-то одного компонента могут оказать влияние на решение, при- нимаемое в отношении других компонентов. Если система передачи данных предназначена для прогно- зирования, то получение, передача и прием гидро- метеорологических данных являются важными, но недостаточными компонентами системы прогнозиро- вания. Центр прогнозирования, облачающий хорошо обученным персоналом в области подготовки прогно- зов и предупреждений, а также оповещении людей в случае появления рисков, является также основным компонентом системы прогнозирования.

2.5.7 Мониторинг качества воды

В главе 7 настоящего Руководства дается подробное описание приборов и полевых методов сбора данных о качестве воды. Однако положение пунктов наблюдений
участков, время отбора проб, способ определения параметров и все соответствующие величины долж-
ны быть записаны, а вся работа с данными должна
проходить согласовано. Если пропустить что-то одно,
вся работа будет напрасной.

2.5.7.1 Идентификация станции

Важность точного описания расположения каждой
станции и условий отбора проб рассмотрена в пункте
2.5.2.2.

2.5.7.2 Полевые бланки для мониторинга
качества воды

Пожалуй, одним из самых важных шагов в выпол-
нении программы отбора проб является запись на
полевых бланках даты, времени, места взятия пробы
и сделанных измерений. Все полевые записи должны
быть сделаны до ухода со станции. Дополнительные
инструкции содержатся в разделе 2.5.5.

Два примера бланков для записи полевых анализов и
наблюдений показаны на рисунках I.2.13 и I.2.14.
Бланки, приведенные на этих рисунках, подходят
для того персонала, который для хранения результатов
использует компьютерные системы. Бланк на рисунке
I.2.13 может быть использован любой группой, ко-
торая собирает данные о качестве воды. Оба бланка могут
быть приспособлены для особых ситуаций. Обычно
записывается следующая информация:

a) участок пробоотбора и дата;
b) параметры, измеряемые в поле;
с) тарирование прибора;

d) МОНИТОРИНГ КАЧЕСТВА ВОДЫ

АНАЛИЗ РЕЗУЛЬТАТОВ В ПОЛЕ

<table>
<thead>
<tr>
<th>СТАНЦИЯ</th>
<th>КАЧЕСТВА ВОДЫ № 0,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of sampling</td>
<td>prec freq</td>
</tr>
<tr>
<td>day mo yr hr min zone</td>
<td>19 31 42 44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>СТАНЦИЯ</th>
<th>КАЧЕСТВА ВОДЫ № 0,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of sampling</td>
<td>prec freq</td>
</tr>
<tr>
<td>day mo yr hr min zone</td>
<td>19 31 42 44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARD TYPE</th>
<th>Duplicate 4–31</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1A</td>
<td>1 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZАМЕЧАНИЯ:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CARD TYPE</th>
<th>Station number</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1A</td>
<td>sequential</td>
</tr>
<tr>
<td>1 3</td>
<td>4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARD TYPE</th>
<th>Station number</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1A</td>
<td>sequential</td>
</tr>
<tr>
<td>1 3</td>
<td>4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

| КОЛЛЕКТОР: ДАТА: |
|---|-----------------------------|

| Рисунок I.2.13. Полевой бланк для работы с NAQUADAT или подобной компьютерной системой |
Транспортировка проб для анализа качества воды

Как только пробы воды отобраны, их нужно доставить в лабораторию. Способ транспортировки зависит от географического положения пункта наблюдений и максимально возможным временем между отбором пробы и анализом каждого ее компонента. Наблюдатель отвечает за доставку пробы к самолету, автобусу, поезду или почтовому отделению таким образом, чтобы задержки в доставке пробы были минимальными.

Схема для транспортировки и хранения пробы должна быть определена еще до начала полевых работ.

Обеспечение качества при мониторинге качества воды в полевых условиях

Программа по обеспечению качества при мониторинге качества воды в полевых условиях — это систематический процесс, который вместе с программами обеспечения качества в лаборатории и при хранении данных обеспечивает необходимый уровень надежности получаемых данных. Эта программа состоит из нескольких элементов. Все оборудование должно содержаться в чистоте и хорошем рабочем состоянии. Также должны аккуратно храниться записи о результатах тарирования и профилактическом ремонте, а стандартизованные и утвержденные методики, такие, как рекомендованные в настоящем Руководстве, должны неукоснительно выполняться полевым персоналом.

2.5.8 Сбор специальных данных

2.5.8.1 Предъявляемые требования
Данные о сильных ливнях и наводнениях очень важны при определении критериев проектирования многих типов гидравлических объектов. В общем случае сети регулярного наблюдения не обеспечивают достаточно подробной информации о распределении ливневых дождей или о расходе воды при прохождении пика паводка. Кроме того, при сильных паводках постоянные водомерные устройства иногда заливаются, или их смывает и уносит, и тогда все данные пропадают. Поэтому очень ценная информация может быть получена бригадой, проводящей полевые съемки сразу после паводка. Помимо этого, в гидрологических исследованиях часто бывают полезны данные, полученные с использованием таких приборов, как метеорологические радиолокаторы (раздел 3.7).

2.5.8.2 Дополнительные измерения ливневых осадков
Измерения осадков с использованием отдельных, нестандартных осадкомеров, таких как ведра, ложбины, бочки и пр. (если есть уверенность в том, что до начала ливня они были пустыми), также могут быть использованы, и таким образом дополняют данные, полученные от регулярной сети наблюдений. Можно использовать и показания очевидцев о времени начала и окончания дождя, и о его интенсивности. Во всех случаях надо очень осторожно подходить к трактовке всех этих данных, и если между ними и показаниями регулярной сети имеются расхождения, последней следует доверять больше.

2.5.8.3 Данные, полученные от метеорологических радиолокаторов и спутников
При определении интенсивности дождя и его распределения по площади, а также при определении времени начала и окончания осадков в каком-то бассейне реки, данные, полученные от метеорологических радиолокаторов и спутников, являются весьма ценными. Данные, необходимые для записи, можно получить на фотопленку или в цифровой форме от радиолокатора через компьютер. Эти цифровые данные могут быть сразу же переданы в бюро прогнозов через телеграфную букуфо-печатющую аппаратуру или через компьютерную сеть.

2.5.8.4 Экстремальные уровни и расходы воды в реке
Экстремальные события во время наводнений и засух должны быть зафиксированы как на обычных водомерных станциях, так и на постах, где измерения не проводятся. Метки высоких вод на реке полезны для картирования затопленных районов, при проектировании гидротехнических сооружений, таких как шоссейные мосты, и для расчета уклона паводков. Если эти метки аккуратно отмечены, то вместе с другими данными они могут быть использованы для расчета максимального расхода косвенными методами (раздел 5.3.5).

Полевые работы по измерению минимального стока в местах, где нет водомерных постов, дают ценную информацию при минимальных затратах. Эти измеренные расходы могут быть соотнесены с одновременными расходами на индексированных водомерных станциях для определения характеристик минимального стока на постах, где не проводятся постоянные измерения.

2.5.8.5 Методы формирования видеоизображения
Установка видеокамеры может предоставить ценную информацию об условиях на участке проведения измерений. Камерой могут быть зафиксированы распространение ледяного покрова, период подпорных явлений из-за льда и т.д. Этот подход можно также использовать для дистанционного мониторинга потенциально опасных явлений, например риска схода лавин.

С недавнего времени подходы, основанные на видеоизображении, применяются для измерения стока путем оценки поверхностных скоростей с использованием измерителя скорости на основе изображения частиц. Видеоданные могут быть записаны на исследуемом участке или, если необходима информация в режиме реального времени, быстро переданы с помощью каких-либо средств передачи данных.

2.6 ИЗМЕРЕНИЕ ФИЗИКО-ГЕОГРАФИЧЕСКИХ ХАРАКТЕРИСТИК

2.6.1 Общие положения
Положения, рассмотренные в этом разделе, касаются двух довольно различных физико-географических особенностей — местоположения изучаемого объекта и их физических реакций на характер атмосферных явлений. Определение местоположения этих объектов, можно не только составить их каталог, но также установить их пространственное распределение и климатические зоны, к которым они принадлежат.

Сами объекты могут рассматриваться в виде точечных контуров, линий, площадей или объемов, характеризующих определенную взаимосвязь между отдельной
характеристикой и гидрологическим режимом. Например, речной сток является результатом преобразования климатических явлений (дождь, снеготаяние) физическим комплексом, включающим водосборный бассейн. Местоположение бассейна отчасти определяет те климатические характеристики, от которых зависят метеорологические явления, формирующие гидрологический режим. Однако физические характеристики бассейнов не только управляют гидрологической реакцией бассейна на метеорологические явления, но и некоторые из них, такие как орография или расположение в пространстве, могут также определять климатические особенности бассейна.

Физико-географические характеристики сейчас широко рассматриваются как информационные «слои» современных ГИС. Физический отклик водосбора на метеорологический «вход» может быть проанализирован при помощи гидрологических и гидравлических моделей. Фундаментальные процедуры, рассмотренные в этом разделе, формируют основу сбора и анализа данных, осуществляемых с помощью компьютера.

2.6.2 Системы координат и структура данных

Физико-географические характеристики являются лишь одним из компонентов геопространственной информации, т. е. информации, относящейся к характеру и расположению природных и культурных ресурсов и их отношению к деятельности человека. Эта информация настолько важна, что общие понятия о национальной и международной инфраструктуре пространственных данных и структуры данных стали активно развиваться. Инфраструктуру пространственных данных можно рассматривать как технологию, политику, критерии, стандарты и человеческие ресурсы, необходимые для обмена геопространственными данными между всеми уровнями правительственных, частных и некоммерческих секторов, а также между научными сообществами. Это обеспечивает базу или структуру существующих методов и взаимоотношений между производителями данных и пользователями, которые облегчают обмен данными и их использование. Структура данных может быть рассмотрена как совокупность непрерывных и полностью интегрированных геопространственных данных, которые предоставляют контекст и справочную информацию о стране или регионе. В общем случае она включает в себя согласование данных (геодезический контроль, данные о свойствах земли), форму представления данных (например, физико-географические данные), а также концептуальные данные (например, сведения об органах власти). Четкая национальная структура данных облегчает обмен информацией и значительно сокращает дублирование прилагаемых усилий. Структура данных, которая представляет интерес с точки зрения гидрологического анализа, включает геоэкологический контроль, данные о высотных отметках, ортогональное изображение территории, гидрографическое описание, характеристику транспорта и органов власти, а также кадастровые сведения (National Research Council, 1995).

Геоэкологический контроль определяется использованием международной системы координат — меридианов и параллелей, разделяющих земной шар в широтном и меридиональном направлениях на 360°, с нулевым меридианом, проходящим через Гринвич. Эта система имеет наиболее широкое применение. Ее единственное неудобство состоит в том, что расстояние, соответствующее одному радиусу по долготе, изменяется от 111,111 км на экваторе до 0 на полюсе и составляет 78,567 км на широте 45° (одному градусу широты всегда соответствует расстояние в 111,111 км). Также используются местные системы координат и другие виды проекций, например система Ламберта. Однако такие системы не могут быть рекомендованы в международном руководстве. Кроме того, алгоритмы перевода географических координат в местные системы, когда они могут потребоваться, легкодоступны.

Высота или абсолютная высота определяется относительно заданного уровня или плоскости. Несмотря на то, что иногда используются местные уровни отсчета, средний уровень моря — наиболее часто используемый уровень отсчета. Широкое применение глобальной системы определения местоположения (ГСОМ) привело к принятию системы геоцентрических вертикальных (и горизонтальных) данных в соответствии с мировой геодезической системой вместо тех, которые были основаны на среднем уровне моря. Таким образом, предпочтительный эталон вертикальных отметок задается эталонным эллипсоидом WGS-84 (или национальной геоцентрической составляющей). Основным требованием при использовании любой системы координат является точность определения данных.

Топографические характеристики бассейна реки могут быть представлены двумя различными способами: как цифровая модель рельефа или как нерегулярная триангуляционная сеть (TIN). Цифровая модель рельефа — это сеть значений высотных отметок с одинаковым размером ячеек, в то время как триангуляционная сеть — это совокупность точек, соединенных в треугольные поверхности, которые примерно отображают поверхность. Пространственное распределение точек в триангуляционной сети является неравномерным, что позволяет располагать их на важных наземных ориентирах, дорогах или берегах рек. Точность таких цифровых моделей земной поверхности зависит от источника данных, плотности и размещения точек и других данных, используемых при их обработке. Стандартные
Глава 2. Методы наблюдений

Измерения в точке

Геометрическая точка определена здесь как единственное местоположение на линии либо внутри площади, либо объема. Точка может быть физическим элементом, таким как местоположение измерительного прибора или замыкающий створ бассейна. Она может также служить элементом площади (участка земли), в котором данная характеристика или набор характеристик должна быть определены или измерены. Физико-географические характеристики, относящиеся к точке, могут быть простыми или сложными (составными). Примером простой характеристики точки на карте является ее высота — одна из уникальных координат в трехмерном пространстве. Более сложной характеристикой может быть описание почвенного профиля с основанием в точке.

Применение дистанционных методов, начиная с аэрофотосъемки, привело к расширению понятия точки до области (минимального элемента изображения), площадь которой может достигать нескольких квадратных километров. Предельная точность в этом случае такова, что применяемые методы могут не позволить обнаружить различие между двумя точками (например, вследствие недостаточной разрешающей способности оборудования), и в качестве точки может быть взят минимальный элемент изображения.

Горизонтальное местоположение точки, т. е. ее расположение на глобусе определяется выбранный системой координат (раздел 2.6.2), которая является предметом рассмотрения геодезии и топографии. Для того чтобы закодировать точку в каталоге, указав ее географическое положение, была изобретена универсальная система координат. Это квадратичная система GEOREP (UNESCO, 1974) для пространственного изображения протяженных объектов. Другие системы позволяют определять положение точек, расположенных вдоль потока, по линейным расстояниям до них от заданного начала (например: устья, места слияния рек).

Физико-географическое описание точки включает в себя характеристики ее геометрических свойств (форма, рельеф, уклон и т. д.) и ее постоянных физических свойств (проницаемость, характер горной породы, структура почвы, тип землепользования и проч.). Первые ограничены из-за конкретного положения точки на склоне, тогда как вторые включают в себя целый ряд возможных физических свойств, выраженных в скалярной форме для точки на горизонтальной поверхности или в векторной форме для профиля (например, геологическое ядро).

Линейные измерения

Любые физико-географические элементы линейны, если они могут быть представлены линией на карте или в пространстве. В гидрологии наиболее часто используются три вида линейных элементов:

a) границы;
b) изолинии постоянных характеристик (например, контуры);
c) тальвеги.

Первые два вида связаны с пространственными описаниями, которые будут описаны позже.

Тальвег рассматривается не только самостоятельно, представленный в горизонтальной проекции и на долготном профиле, но также в комбинации с другими тальвегами, формирующими речную сеть, которая имеет свои собственные физико-географические характеристики. Некоторые характеристики речной сети линейны, например разветвлённость русла (бифуркационное отношение), в то время как другие — например густота сети — имеют пространственный характер.

Водоток

Водоток в горизонтальной проекции при соответствующем масштабе может быть представлен двумя линиями, представляющими его берега. Основываясь на этих двух линиях, ось может быть проведена как равноудаленная от двух берегов. Ось может быть также определена как линия, соединяющая нижние точки последовательных поперечных сечений. В действительности эти элементы — видимые берега и нижние точки — не всегда явно выражены, и масштаб карты не всегда позволяет отразить характерные свойства...
берегов. Картирование в этом случае сводится к представлению водотока в виде линии.

Расстояния вдоль реки измеряются по линии реки на карте с использованием курвиметра. Точность определения зависит от масштаба карты и ее качества также, как и от ошибки курвиметра, которая не должна превышать 6 % при расстоянии на карте в 10 см, или 4 % для 100 см и 2 % при большем расстоянии. Многие гидрологические свойства могут быть получены напрямую из ортоизображений или цифровых данных о рельефе с помощью Географической информационной системы (ГИС) (раздел 2.6.7).

Ось водотока редко бывает прямой. Когда она представлена квазипериодическими изгибами, каждый полупериод называется меандром. Свойства и размеры меандртов были основательно изучены географами и специалистами в области речной гидравлики.

2.6.4.2 Речная сеть

Водотоки, находящиеся в пределах бассейна, формируют речную сеть. Речная сеть представлена водотоками разного размера. Для их классификации было предложено несколько систем, которые используются в различных странах. ГИС обеспечивают автоматическую классификацию в соответствии со схемами, разработанными Хортоном, Шуммом, Шталером, Шриве и др. Наиболее известна классификация Хортона, в которой каждый элементарный водоток рассматривается как водоток первого порядка, любой водоток с притоком первого порядка — как водоток второго порядка и любой водоток с притоком порядка х рассматривается как водоток порядка x + 1. При слиянии рек любые сомнения относительно порядка снимаются путем придания высшего порядка наиболее длинному водотоку (рисунок I.2.15) (Dubreuil, 1966). Такое решение создавало некоторую неопределенность, которая была устранена Шуммом путем систематического присвоения порядка х водотокам, сформированным двумя водотоками порядка x – 1 (рисунок I.2.16). Главный источник ошибки при такой системе определения порядка водотока связан с их картированием, когда определение самых малых водотоков бывает часто достаточно субъективным.

Линейные характеристики речной сети, которые могут быть измерены по карте, коэффициент слияния Р и коэффициент длины Rl, основываются на законах Хортона и были подтверждены классификации Хортона. Если обозначить Nx как число водотоков порядка х, и lmx = ∑lx/Nx — это средняя длина водотоков порядка х, тогда эти законы выражаются следующими соотношениями:

\[N_x = R_c \cdot N_{x+1} \] \hspace{1cm} (2.9)

и

\[lmx = R_l \cdot l_{x-1}, \] \hspace{1cm} (2.10)

которые образуют геометрическую прогрессию и могут быть записаны:

\[N_x = N_1 \cdot R_c^{x-1} \] \hspace{1cm} (2.11)

Рисунок I.2.15. Классификация Хортона
и

\[\ln x = R_{x_{1}} \times \ln m, \]

где \(R_{c} \) и \(R_{l} \) вычислены как уклоны прямых линий, приведенных к графическим точкам \((\log N_{x}, x)\) и \((\log l_{mx}, x)\) и \(x \) — порядок бассейна.

2.6.4.3 Профиль водотока

Профиль водотока — это изменение высотных отметок отдельных точек его тальвега как функции расстояния от условного начала, за которое обычно принимается место слияния с более крупным водотоком или устье водотока. На таком профиле следует определить ряд топографических характеристик, таких как высокие отметки точек (пороги), понижения между двумя порогами (плесы), быстрины, водопады и изменения уклона, которые обычно приурочены к границе между двумя участками реки с различным геологическим строением (рисунок I.2.17).

Средний уклон всего водотока — это разность высотных отметок его высшей точки и точки слияния или устья, разделенная на общую длину водотока. Это понятие является простым, но не очень часто используемым. С другой стороны, сведения об уклонах последовательных участков водотока необходимы для большинства стоковых и гидравлических моделей.

Профили главного водотока и различных притоков в одном и том же бассейне могут быть представлены на одной и той же диаграмме. На рисунке I.2.18 в качестве примера показаны профили реки Нигер в Коулико и ее главных и второстепенных притоков. Такая диаграмма дает обобщенное представление об изменениях уклонов элементов речной сети.

2.6.4.4 Поперечное сечение

Профиль долины, перпендикулярной оси потока, называется поперечным сечением. Набор поперечных сечений представляет собой ценную информацию при разработке моделей речного стока. Поперечные сечения используют при некоторых видах расчетов, и способ их установления может зависеть от того, где они будут применяться.

Особенно важным случаем является вычисление стока при измерении расхода воды, когда высотные отметки выражаются через глубину и определяются посредством промеров (раздел 5.3). Поперечные сечения обычно получают, выполняя обычные топографические измерения в период самой низкой водности.

2.6.4.5 Физические характеристики

Основными физическими характеристиками водотока являются тип материала, слагающего русло (особенно его способность к сцеплению), вид и количественные показатели растительности, находящейся в водотоке и на его берегах, а также шероховатость дна, которая зависит от продольного и поперечного распределения донных отложений. Коэффициент шероховатости включается в расчетные зависимости при расчете стока косвенным способом (раздел 5.3.5) и моделировании стока (том II, глава 6).
Рисунок I.2.17. Профиль водотока

Рисунок I.2.18. Профиль реки Нигер и ее притоков
2.6.5 Измерения площадей

2.6.5.1 Бассейн

Бассейн определяется как площадь, которая получает осадки, и под воздействием гидрологических процессов, приводящих к потерям и задержанию воды, преобразует их в сток в замыкающем створе. Граница водосбора или периметр бассейна определяются исходя из того, что любые осадки, выпавшие внутри этих границ, движутся по направлению к замыкающему створу, тогда как любые осадки, выпавшие вне этих границ, дренируются другим бассейном и замыкающим створом. В некоторых случаях границы бассейна не могут быть легко определены, например когда начало главного водотока формируется в плоской низменной долине или болотистой местности. Границы водораздела обычно определяются с помощью топографических карт или аэрофотосъемки.

Периметр бассейна измеряется в рамках геоинформационных систем (раздел 2.6.7) или с помощью курвиметра. Измеренный периметр есть функция масштаба и точности карт или фотоизображений, качества курвиметра и тщательности измерения; точность измерения определяется его целью (рисунок I.2.19).

Площадь бассейна определяется при помощи ГИС или измеряется планиметром посредством обвода границ бассейна, установленных описанным выше способом.

Изрезанность бассейна характеризуется отношением его периметра к длине окружности круга, площадь которого соответствует площади бассейна. Если обозначить буквой A площадь бассейна и буквой P его периметр, измеренные в соответствии с указанными выше правилами и выраженные в сопоставимых единицах, тогда отношение двух периметров будет характеризоваться коэффициентом Гравелиуса (сжатости), который определяется по формуле 2.13:

\[C = 0.282 \frac{P}{\sqrt{A}}. \]

(2.13)

Понятие эквивалентного прямоугольника также связано с изрезанностью бассейна. Оно позволяет определять особый склоновый индекс. Эквивалентный прямоугольник имеет такую же площадь и такой же коэффициент Гравелиуса, как и бассейн. Длина этого прямоугольника выражается следующим уравнением:

\[L = \frac{A^{1/2}}{1.128} \left[1 + \sqrt{1 - 1.272 / C^2} \right]. \]

(2.14)

Густота речной сети определяется как суммарная длина водотоков всех порядков, находящихся в пределах единичной площади бассейна:

\[D_d = \frac{\sum L_x}{A}, \]

(2.15)

где \(L_x \) — суммарная длина водотоков порядка \(x \). Обычно на практике длина водотоков выражается в км, а площадь в км\(^2\).

Рельеф бассейна, показанный на картах с помощью горизонталей, может быть описан с помощью гипсометрического распределения или гипсометрической кривой. На рисунке I.2.20 показано изображение рельефа в двух смежных бассейнах, диапазоны высот показаны различными цветами.

Гипсометрическое распределение показывает, какую часть в процентах (или в долях) составляет площадь каждой из высотных зон в общей площади бассейна. Гипсометрическая кривая показывает на оси ординат процент площади бассейна, которая располагается на или выше соответствующей высотной отметки, указанной на оси абсцисс (рисунок I.2.21). На практике обобщенное распределение площадей получается с использованием ГИС или с помощью последовательного планиметрирования отдельных площадей, расположенных между горизонталами, начиная с самой низшей точки бассейна.

Можно рассчитать среднюю высоту бассейна посредством деления площади гипсометрической кривой на длину ординаты, соответствующей всему бассейну.

Уклон бассейна может быть представлен несколькими индексами. Наиболее старый и, вероятно, до сих пор наиболее широко используемый индекс — средний уклон бассейна \(S_m \). Он определяется с помощью горизонталей по формуле:

\[\text{Рисунок I.2.19. Фактический и измеренный периметры} \]
$S_m = z \sum l / A$, \hfill (2.16)

где \(z\) — расстояние между горизонталями; \(\sum l\) — общая длина всех горизонталей в пределах бассейна; \(A\) — площадь бассейна. Трудности и главный источник ошибки при определении этой характеристики связаны с измерением \(\sum l\). Горизонтали почти всегда сильно извилисты, и их истинная длина не является реальной характеристикой той роли, которую они играют при вычислении индекса. Поэтому необходимо слаживать неровности и иметь в виду, что окончательные результаты могут быть, до некоторой степени, неустойчивы и изменчивы.

Единственный способ избежать этого — получить индекс уклона по гипсометрической кривой, которая дает обобщенное представление о рельефе, очерченном горизонталями, и «вес» отдельных площадей, соответствующих различным высотным интервалам с помощью нелинейной функции среднего уклона в каждом интервале. Индекс уклона Роше, также названный индексом стоковой чувствительности, удовлетворяет этим условиям. Понятие эквивалентного прямоугольника (уравнение 2.14) используется для каждого контура, чтобы преобразовать геометрические горизонтали в параллельные прямые линии на прямоугольнике, представляющем бассейн в целом (рисунок I.2.22). Если \(a_i\) и \(a_{i-1}\) — высотные отметки двух смежных горизонталей, \(x_i\) — расстояние между ними на эквивалентном прямоугольнике, то среднее значение уклона между этими двумя горизонталями берется равным \((a_i - a_{i-1}) / x_i\) и индекс уклона записывается как \(\delta_i\) доли общей площади бассейна, заключенной между \(a_i\) и \(a_{i-1}\): \n
$$ I_n = \sum (\delta_i (a_i - a_{i-1}) / L)^{1/2}. \hfill (2.17) $$

индекс уклона Роше:

<table>
<thead>
<tr>
<th>Бассейн</th>
<th>Длина эквивалентного прямоугольника</th>
<th>Индекс уклона</th>
</tr>
</thead>
<tbody>
<tr>
<td>река Бетсибока в Амбодирока</td>
<td>238 км</td>
<td>0,078</td>
</tr>
<tr>
<td>река Икопа в Антсатрана</td>
<td>278 км</td>
<td>0,069</td>
</tr>
</tbody>
</table>

Если у бассейнов очень маленький уклон, как это наблюдаются, например, во внутренних равнинах Северной Америки, то могут образовываться закрытые подбассейны, не имеющие выхода к главному водотоку, или значительные части бассейна могут пополнять речной сток нерегулярно. В таком случае может быть...
использована концепция эффективной площади дренирования. Обычно она определяется как площадь, которая вносит вклад в речной сток в медианный по водности год. Расчет эффективной площади дренирования может потребовать выполнения серьезного картографического и гидрологического анализа.

Физические характеристики бассейна — это, по существу, типы почв, характеристики естественного или искусственного растительного покрова (посевов) почвенного покрова (например, озера, болота или ледник) и типа использования земли (например, сельские или городские территории, озера или болота). Они также могут быть выражены в показателях реакции бассейна на осадки (например, классы проницаемости). Эти физические характеристики могут быть скомпонованы при помощи ГИС.

Для количественного выражения этих характеристик необходимо определение критериев и процедур для очерчивания площадей, соответствующих этим критериям. После этого остается только измерить каждую из этих площадей и выразить в процентах или долях единицы. Средствами для определения таких распределений являются ГИС, обычная и/или специализированная картография, аэрофотосъемка и дистанционные средства измерений со сравнительно хорошим разрешением (элементы изображения не превышают нескольких сотен квадратных километров).

2.6.5.2 **Координатная сетка**

Создание баз физико-географических данных, особенно при разработке моделей типа «осадки–сток» с пространственной дискретизацией, вызывает необходимость разделения площади бассейна, основываясь на сетке квадратов или координатной сетке. В зависимости от цели размер сетки может быть больше или меньше, он может измеряться в километрах (один или пять квадратных километров) или основываться на международной географической системе (1’ или 1° сетки). Географические информационные системы (раздел 2.6.7) сделали обмен данными, представленными в двух видах (на координатной сетке и в произвольной форме), простой задачей при наличии созданных баз данных.

2.6.6 **Измерения объема**

Измерения объемов связаны, главным образом, с определением запасов воды и наносов. Оценка запасов подземных вод является предметом гидрогеологии. Поэтому данный вопрос здесь не рассматривается, также как и вопрос об оценке объема наносов, отложившихся на поверхность почвы. Запасы воды на поверхности бассейна — это в основном объемы существующих озер или водохранилищ, для расчета которых используются батиметрические методы, или объемы проектируемых водохранилищ, для расчета которых используются топографические методы.

2.6.6.1 **Батиметрические методы**

Обычные карты редко содержат батиметрические данные озер и водохранилищ. Поэтому объем существующего водохранилища необходимо определять с помощью специальных батиметрических съемок. Как правило, они проводятся с судна с использованием обычных методов измерения глубин и определения местоположения судна. Глубина интерпретируется как
единица информации, соответствующая уровню воды, определенному по уровнемеру или лимниграфу так, чтобы изменения уровня могли быть отслежены.

Измерения глубин могут использоваться для проведения изобат, и объем водохранилища над заданной плоскостью может быть подсчитан с помощью двойного интегрирования (в основном графического) изобат. Этот метод применяют, в частности, для мониторинга заполнения водохранилища.

2.6.6.2 Топографические методы

Поскольку положение плотины является фиксированным, расчеты эффективности регулирования стока водохранилищем и управления его режимом требуют наличия кривой объемов как функции уровня воды в водохранилище (кривая уровень—объем). Для определения этого отношения необходимо иметь высотные контуры земной поверхности в пределах всей площади будущего затопления. Для этого требуются карты или топографические планы указанной площади в масштабе от 1:1 000 до 1:5 000. Если такая возможность отсутствует, на стадии предварительного проектирования могут быть использованы карты в масштабе 1:50 000, однако впоследствии необходимо проведение топографической съемки в надлежащем масштабе.

2.6.7 Географические информационные системы

Географические информационные системы (ГИС) находят широкое применение в области оперативной гидрологии и оценки водных ресурсов. Многие проблемы сбора и интерпретации данных могут быть легко разрешены посредством использования ГИС.

В сфере планирования и проектирования возможность быстро и наглядно картировать поверхностные воды и соответствующие пункты наблюдений позволяет осуществлять их интеграцию более эффективно. Карты сети, показывающие бассейны или станции и выбранные в соответствии с качеством записей для определенного водосбора или по определенным характеристикам, могут быть использованы как для краткосрочного, так и долгосрочного планирования. Существенные характеристики комплексных сетей также могут быть очень наглядно представлены при помощи ГИС.

Методы ГИС используются в гидрологических моделях с целью выбора и формирования распределенных по водосбору данных. Применяемые в сочетании с цифровыми моделями рельефа или нерегулярными триангуляционными сетями (TIN) (раздел 2.6.2), геоинформационные системы позволяют быстро выполнить полное физико-географическое и гидрологическое описание бассейнов.

Во многих странах картирование стока и его интерполяция выполняются с помощью ГИС. Преимущество обработки больших объемов данных означает возможность подготовки более совершенных и подробных карт, изолиний и тематических разделов. Это значительно улучшает технологии оценки водных ресурсов, поскольку подготовка карт зачастую является трудоемким и дорогим процессом.

Интерпретация данных, полученных в реальном масштабе времени, также может быть улучшена посредством ГИС. Тематическое картирование станций, значения измерений на которых выше пороговых величин осадков, очевидно, должно быть очень полезным как в оперативной гидрологии, так и для агентств, занимающихся прогнозированием.

ГИС, имеющиеся сегодня для обычных компьютеров, удобны в использовании и имеют невысокую стоимость. Основные расходы связаны с формированием базы данных, обучением и повышением квалификации технического персонала.

2.6.8 Новые технологии

В последующих главах настоящего тома Руководства рассматриваются доказавшие свою эффективность технологии, которые уже широко используются в практической деятельности во многих районах мира. Однако, как указано выше, в настоящее время появляются все новые и новые технологии. В данном разделе рассмотрены несколько таких новых технологий. Это сделано для того, чтобы гидрологические службы были осведомлены о своих возможностях.

2.6.8.1 Дистанционное зондирование

Для гидрологических измерений обычно используются два вида методов дистанционного зондирования: активный (посредством направления на цель луча и анализа реакции цели) и пассивный (анализ естественного излучения объекта).
В активных методах может использоваться высоко-
частотное электромагнитное (радиолокатор) или акус-
tическое излучение (ультразвуковые устройства). Аппаратура может быть установлена на поверхности
земли (радиолокатор, ультразвуковое устройство), на
самолетах или на спутниках (радиолокатор). Активное
dистанционное зондирование осуществляется для из-
мерений по площади, хотя можно его использовать и
для точечных измерений (ультразвуковые устройства).

В пассивных методах используется электромагнит-
ное излучение (в диапазоне от инфракрасного до
фиолетового и в редких случаях ультрафиолетового).
Большинство современных технологий основано на
использовании многоспектрального сканирующего
устройства, которое может быть установлено на борту
самолета, но гораздо чаще его размещают на спутниках.
Пассивное зондирование — всегда площадное.

В настоящее время радиолокаторы используются для
количествои оценки осадков над определенной
площадью. Водный эквивалент снега можно опреде-
лить путем измерения естественного гамма-излучения
от радиоизотопов калия, урана и тория в верхнем 20-
санитметровом слое почвы в условиях голой поверх-
ности и со снежным покровом. Наблюдения делаются
с летающего на малой высоте воздушного судна.
Дан-
ные собираются с полосы шириной 300 м и длиной
15 км. На результаты влияют ледяные линзы или жидк-
кая вода в снежном покрове, гололедица или стоячая
вода (Carroll, 2001). Микроволновые датчики, уста-
новленные на самолетах, так и на спутниках, ис-
пользуются также для наблюдения за свойствами
снежного покрова. Кроме того, активный радар
«RadarSat» широко применяется для картирования
области распространения мокрого снега.

Бортовые оптические устройства (Лидар) сегодня ис-
пользуются для быстрого и во многих случаях более
точного и низкозатратного определения топографи-
ческих характеристик по сравнению с обычной аэро-
фотосъемкой. Получаемые при этом цифровые модели
рельефа применяют при гидрологическом и гидрав-
лическом моделировании и определении баланса
массы ледников. Спутниковая альитметрия Лидар
также используется для получения очень хороших
tопографических данных для военных целей и иссле-
dовательских задач, но до сих пор еще не выпущена на
рынок. При отсутствии национальных топографических
данных можно использовать глобальную цифро-
вую модель рельефа с низким разрешением GTOPO30
с горизонтальной сеткой с шагом 30 угловых секунд
(приблизительно 1 км). Вертикальная точность дан-
ных оставляет примерно 30 м. Эта цифровая модель
рельефа также связана с пакетом HYDRO1K, который
daet набор из шести растровых и двух векторных
комплектов данных. Указанные комплекты данных
охватывают многие общие производные продукты,
используемые в гидрологическом анализе. Комплекты
растровых данных включают гидрологически кор-
ректную цифровую модель рельефа, расчетное направ-
ление потоков, характеристики аккумуляции стока,
данные об уклоне, экспозиции склонов и суммарный
tопографический индекс влажности. Направленные
течения и бассейны распределяются как векторные
наборы данных.

Следующая возможность представления топографи-
ческих данных — цифровая модель рельефа, получен-
ная в результате радарной топографической съемки с
разрешением в три угловых секунды (90 м). Данные
для большей части площади покрытия обработаны в
пределах уровня 1, который обеспечивает абсолютную
горизонтальную точность 50 м и вертикальную — 30 м.
Уровень 2 этой модели, доступный в настоящее вре-
мя только Соединенным Штатам Америки, имеет гори-
зонтальную точность 30 м и вертикальную — 18 м.

Другие возможности применения дистанционного
зондирования в гидрологии включают дистанционное
измерение влажности поверхностного слоя почвы при
помощи пассивных микроволновых спутниковых
методов или авиационных методов естественного гам-
ма-излучения, а также измерении температуры поверх-
ности земли как исходный параметр для определения
суммарного испарения. Использование измерений
индекса листовой поверхности также ведет к дистан-
ционному определению суммарного испарения. Дис-
tанционное зондирование качества воды открывает
значительные перспективы в связи с изобретением
новых спутников и датчиков. Спектральные или тер-
мальные свойства водоемов, подверженных воздей-
ствию взвешенных наносов, водорослей, роста рас-
тений, растворенных органических веществ, терьналь-
ного шлейфа, которые могут быть определены борто-
выми самолетными или спутниковыми датчиками
(UNEP/WHO, 1996). Дистанционное зондирование
можно также применять для измерения площади
водных объектов и степени затопления территорий с
помощью активного радара «RadarSat». Помимо тре-
бования калибровать датчики, установленные на борту
воздушного судна или спутника, существует необхо-
димость наземной корректировки данных дистан-
ционного зондирования с целью проверки, представ-
ляют ли эти данные действительные значения пере-
менных в точках измерений.

2.6.8.2 Гидроакустические методы

Гидроакустические методы очень перспективны для
сбора гидрологических данных. Акустические сигналы
могут использоваться для определения взаимодей-
ствия между двумя различными средами или исследо-
вания характеристик одной среды. Например, экология,
которые используются для определения русла в гидрометрической съемке или измерения расстояния до водной поверхности при установке на потоке или выше него. Результаты могут быть удовлетворительными в случае, если калибровка прибора удалено особое внимание. Акустический измеритель течения, который определяет скорость течения воды, измеряя доплеровское смещение акустической энергии, отраженной от переносимых водой частиц, используется уже много лет.

В 1990-х годах был разработан акустический профилометр Доплера (АПДТ) для измерения течения — инструмент, использующий акустическую энергию для определения потока при помощи четырех прямоугольных ультразвуковых излучателей, устанавливаемых на движущейся лодке. В то время, когда лодка пересекает реку, прибор измеряет частоту сдвига отраженных сигналов и использует тригонометрические уравнения для вычисления вектора скорости в объемах, расположенных через равные интервалы, известных как ячейки глубины. Скорость лодки учитывается при помощи компьютера и далее, по геометрическим параметрам русла, также определенным прибором, можно рассчитать скорость потока вдоль русла реки. Этот метод успешно используют для измерения относительно расходов больших водотоков. С недавнего времени усилия направлены на измерения расхода воды маленьких водотоков (глубиной до 2 м), используя портативное гидроакустическое оборудование.

В настоящее время также разрабатываются акустические устройства для определения динамики озер или плотности и характеристик материалов дна и донных отложений. Ультразвуковые расходомеры разработаны в главе 5.

2.6.8.3 Снижение опасности для персонала

Существуют типичные виды опасности для персонала, занимающегося сбором гидрологических данных в тяжелых условиях. Лучшим примером таких опасностей, возможно, может служить измерение водотока в условиях наводнения. Высокие скорости, обломки или лед могут угрожать жизни людей, пытающихся сделать измерения. В этой связи предпринимаются шаги по автоматизации процесса измерений при помощи роботехники и других методов. Одним из более ранних подходов по улучшению безопасности было использование расходомеров, установленных на люльках, передвигающихся между берегами по канатной дороге. Другим подходом был метод измерения расходов с движущейся лодки, который сокращал необходимое для измерения расхода воды время, но по-прежнему подвергал измерителям риск.

Современная концепция рекомендует использовать для измерения течения автоматическую беспилотную лодку, оборудованную акустическим профилометром Доплера, положение которой отслеживается при помощи Глобальной системы определения местоположения. В этом случае измерения могут проводиться в тяжелых условиях с минимальным риском для персонала. Другой подход предполагает использование ручного радара для измерения поверхностных скоростей в нестабильных руслах; поперечное сечение русла определяется при помощи георадара, излучение которого способно проходить сквозь грунт. Радар определяет точную поверхностную скорость, которая затем должна быть отнесена к средней скорости, в то время как георадар, двигаясь вдоль моста или канатной дороги, позволяет определить точное значение поперечного сечения.

К другим способам снижения риска относятся вывод из эксплуатации датчиков уровня воды, основанных на рутных манометрах, и расширение использования спутниковых телефонов как средств поддержания связи с полевыми партиями, работающими в удаленных районах.

2.6.9 Подготовка персонала

Независимо от опыта руководителя работ по сбору данных, профессиональные качества персонала всегда будут оставаться самым ценным ресурсом. Тщательный подбор сотрудников, обучение и контроль за их работой — это ключ к созданию и сохранению квалифицированного персонала. Практические рекомендации по подготовке персонала опубликованы ВМО в Руководящих принципах образования и подготовки кадров в области метеорологии и оперативной гидрологии (ВМО–№ 258) и ЮНЕСКО в Curricula and Syllabi in Hydrology (Учебные планы и программы по гидрологии) (UNESCO, 1983). Обучение сотрудников, хотя оно является дорогостоящим и требует много времени, может быть серьезным вкладом, который приводит к наибольшей производительности и эффективности в отношении сбора и обработки данных. Грамотно выстроенная учебная программа крайне необходима для персонала, занятого сбором данных, поскольку от него зависит состояние окончательных данных. Целью планового обучения должно быть предоставление как общего курса с основными принципами, так и практических навыков для самостоятельной подготовки. Все материалы должны быть значимыми и современными. В качестве примера на национальном уровне (WMO, 2000) можно привести Канадскую программу по повышению квалификации техников-гидрометристов (компонент ГОМС Y00.0.10). В главе 2 тома II представлена дополнительная информация по вопросам подготовки кадров в области гидрологии.
Если наблюдатели сами не выполняют обработку данных, необходимо, чтобы персонал, занимающийся обработкой, был обучен методам сбора данных для того, чтобы гарантировать обработку данных в соответствии с намерениями наблюдателей. Такая практика позволяет персоналу, занимающемуся обработкой данных, периодически получать практический полевой опыт, чтобы сформировать у него физическое представление в отношении исходных данных. Подобные знания у обработчиков информации позволяют распознавать и дать предварительное объяснение ошибочных данных до подтверждения их недостоверности наблюдателем.

Важно установить принцип, что наблюдатель несет основную ответственность за качество данных. Одним из методов соблюдения этого принципа является включение, по возможности, наблюдателя в процесс обработки и обеспечение возврата обработанных данных наблюдателю для оценки. Персонал должен знать, что он несет ответственность за сохранение качества и полноты данных на стадии обработки.

Обработка данных часто носит рутинный характер и поэтому хорошо пригодна для применения автоматизации и технических средств. По этой причине важно, чтобы особое внимание было уделено заботе о людских ресурсах, а система должна быть построена на поощрении интереса, вовлечении в процесс работы, повышении профессионализма, а также на понимании значимости своей работы. Персоналу, занимающемуся обработкой данных, должна быть предоставлена возможность воплощать идеи, которые могут повысить эффективность системы обработки.

Безопасность персонала также является важным фактором в любой профессии, поэтому требуется вводить в служебные обязанности наблюдателей и обработчиков информации определенные стандарты безопасности. Такие стандарты рассмотрены в главе 8. Тем не менее, возможность нанесения вреда персоналу при обработке информации часто может быть обусловлена однообразным и повторяющимся характером их работы. Эти проблемы должны находиться под контролем как специалистов по технике безопасности, так и руководства.

Ссылки и дополнительная литература

Всемирная Метеорологическая Организация, 1998г.: ВСННЦ — Всемирная система наблюдений за гидрологическим циклом (ВМО-№ 876), Женева.

Всемирная Метеорологическая Организация, 2006, 2007 гг.: Руководящие принципы образования и подготовки кадров в области метеорологии и оперативной гидрологии (ВМО-№ 258), тома I и II, четвертое издание, Женева.

Всемирная Метеорологическая Организация, 2010 г.: Настояние по глобальной системе наблюдений (ВМО-№ 544), том I, Женева.

International Organization for Standardization, Technical Committee 147 List of Standards on water quality

Глава 2. МЕТОДЫ НАБЛЮДЕНИЙ

Глава 3

ИЗМЕРЕНИЕ КОЛИЧЕСТВА ОСАДКОВ

3.1 Общие требования: точность и погрешность

Общее количество осадков, достигающих почвы за определенный период времени, выражается высотой слоя, которым они покрыли бы горизонтальную проекцию земной поверхности при условии, что та часть осадков, которая выпала в виде снега или льда, растаяла. Количество выпавшего снега измеряется также высотой слоя свежевыпавшего снега, покрывающего ровную горизонтальную поверхность.

Главная цель любого метода измерения осадков заключается в получении измерений, репрезентативных для той территории, к которой относятся измерения. Гидрология предъявляет строгие требования к точному измерению осадков. Поэтому важными факторами являются выбор места для установки осадкомерного поста, его тип и расположение, а также предотвращение потерь, вызванных испарением, воздействием ветра и разбрызгиванием. Для применения более сложных методов, например с использованием метеорологических радаров и спутников, необходимо хорошо знать свойства ошибок. В данной главе рассматриваются аспекты измерения осадков, которые наиболее значимы для гидрологической практики. Более подробная информация приводится в Руководстве по метеорологическим приборам и методам наблюдений (ВМО-№ 8).

3.2 Размещение осадкомерных постов

При безупречной установке осадкомера собранные им осадки будут представлять истинное количество осадков, выпадающих в данном районе. Практически, однако, это трудно достигнуто из-за влияния ветра, поэтому особое внимание следует обращать на выбор места для осадкомерного поста.

Воздействие ветра необходимо рассматривать с двух точек зрения: воздействие ветра непосредственно на прибор, в результате чего обычно заражается количество осадков; а также влияние самого поста на воздушный поток, что часто является более важным и может приводить к излишкам или дефициту осадков, выпадающих в месте расположения поста.

Помехи, создаваемые ветровым препятствием, зависят от соотношения линейных размеров препятствия и интенсивности осадков. Влияние систематической деформации ветрового поля может быть уменьшено, если не полностью исключено, при соблюдении следующих условий: площадка для установки прибора выбирается таким образом, чтобы скорость ветра на уровне приемного отверстия осадкомера была возможно меньше, но защита площадки не должна быть такой, чтобы окружающие предметы снижали количество осадков; окружение осадкомера таким, чтобы поток воздуха проходил над приемным отверстием осадкомера горизонтально. Все осадкомеры в данном районе или данной стране должны быть установлены в аналогичных условиях, и к их размещению следует применять один и те же критерии.

Осадкомер должен быть установлен так, чтобы его приемное отверстие было параллельно ровной горизонтальной поверхности почвы.

По возможности, измерительный участок должен со всех сторон иметь защиту от ветра различными предметами (деревьями, кустарником и т. д.) примерно одинаковой высоты. Высота этих объектов над уровнем мерного отверстия осадкомера должна быть не менее половины расстояния от осадкомера до защищающих предметов, но не превышать этого расстояния (чтобы предотвратить перехват осадков). При идеальных условиях размещения осадкомера угол между верхом осадкомера и верхом защищающих объектов должен составлять от 30° до 45° к горизонтальной поверхности (рисунок I.3.1).

Для ветровой защиты осадкомеров следует избегать использования таких приспособлений, как заграждения

Рисунок I.3.1. Размещение осадкомера
в виде ряда деревьев, поскольку они увеличивают турбулентность на измерительном участке. Не следует также устраивать отдельно стоящие щиты или другую несплошную защиту из-за различных, часто непредсказуемых воздействий на осадкомер. Если обеспечить приемлемую защиту от ветра невозможно, то следует проследить за тем, чтобы отдельные предметы находились на расстоянии не ближе, чем их четырехкратная высота. Выбирать площадку для установки осадкомера нужно с учетом приведенных ограничений, чтобы избежать погрешностей измерений, вызываемых воздействием ветра. Кроме того, следует соблюдать предосторожность, чтобы выбранный участок не внес ветру существенных искажений в скорость и направление ветра. Необходимо избегать оборудования площадок на склонах или у крутих откосов, спускающихся в одном направлении (особенно если это направление совпадает с преобладающим направлением ветра). Поверхность, окружающая осадкомер, может быть покрыта низкой травой, гравием или галькой, но необходимо избегать твердых и гладких покрытий, например бетонных, с целью предотвращения излишнего попадания брызг в осадкомер.

Приемное отверстие осадкомера должно находиться как можно ближе к поверхности земли (помимо того что скорость ветра возрастает с высотой), но в то же время его высота должна быть достаточной, чтобы избежать попаданий брызг с земли. Во многих странах, в тех районах, где выпадает много снега и нет опасности, что даже при сильном ливне почва будет покрыта лужами, осадкомеры устанавливаются на высоте 30 см. Там, где не могут быть соблюдены перечисленные условия, рекомендуется устанавливать осадкомер на стандартной высоте 1 м. На очень открытых местах, где нет естественной защиты, можно получить более точные результаты при измерении жидких осадков, если приемное устройство осадкомера устанавливается на уровне земли (рисунок I.3.2). Осадкомер должен быть окружен крепкой пластиковой решеткой или решеткой из нержавеющего металла, защищающей от раз브рызгивания. Она должна состоять из тонких пластин высотой от 5 до 15 см, установленных вертикально на расстоянии приблизительно от 5 до 15 см симметричным квадратом. Площадку вокруг осадкомера следует разровнять во всех направлениях в радиусе не менее 100 м.

Другим менее эффективным способом является установка осадкомера в центре круглой площадки, обнесенной дерновой стенкой. Внутренняя поверхность должна быть вертикальной с радиусом около 1,5 м, а внешняя — наклонена к горизонту под углом 15°. Верхний край стенки должен находиться на уровне приемного отверстия осадкомера.

Необходимо предусмотреть дренаж площадки. Следует учитывать, что наземный осадкомер предназначен для измерения жидких осадков и его нельзя использовать для измерения выпавшего снега.

Другим способом оборудования окружения осадкомера является снабжение прибора различными видами ветровой защиты. При удачной конструкции осадкомеры с такой защитой позволяют получать значительно более репрезентативные данные, чем осадкомеры без защиты, полностью подверженные воздействию ветра. Идеальная защита должна:

a) обеспечить параллельность потока воздуха над отверстием прибора;
b) не вызывать какое бы то ни было локальное ускорение ветра над приемным отверстием осадкомера;
c) насколькь возможно уменьшать скорость ветра, ударяющего в боковые стенки прибора; тогда менее важна высота приемного отверстия осадкомера;
d) не вызывать попадания капель дождя в виде брызг в приемное отверстие; при выполнении этого условия высота приемного отверстия над поверхностью почвы не имеет решающего значения;
e) не вызывать образования снежной шапки над осадкомером.
Осадки в виде снега подвержены неблагоприятным воздействиям ветра в значительно большей степени, чем осадки в виде дождя. В районах с особенно сильными ветрами количество снега, уловленного осадкометром с ветровой защитой или без нее, может составлять менее половины действительного количества выпавшего снега. Площадки, выбранные для измерения количества выпавшего снега и для наблюдений за снежным покровом, должны находиться на участках, максимально защищенных от ветра. Как было показано, защита от ветра, которая устраивается возле осадкометра, должна быть весьма эффективной, чтобы свести к минимуму погрешности от ветровых воздействий, особенно для твердых осадков. Однако до настоящего времени не разработаны надежные приспособления, которые бы полностью устраивали ветровые погрешности измерения осадков.

3.3 НЕРЕГИСТРИРУЮЩИЕ ОСАДКОМЕРЫ
[ГОСМС C27]

3.3.1 Общие положения
Нерегистрирующие осадкомеры, применяемые большинством государственных гидрологических и метеорологических служб для обычных измерений, чаще всего представляют собой открытые приемные сосуды с вертикальными стенками, обычно имеющие форму правильного цилиндра. В различных странах используются приборы различной высоты и с приемными отверстиями различных размеров, поэтому результаты измерений, полученных с их помощью, не вполне сравнимы. Высота слоя осадков в осадкомере измеряется с помощью градуированной линейки или мерного стакана. Если у осадкомера стенки невертикальны, то осадки измеряются либо путем взвешивания, либо путем определения их объема, либо путем определения их слоя с помощью измерительной линейки со специальной шкалой.

3.3.2 Стандартные осадкомеры
Осадкомер, используемый для ежедневного измерения осадков, чаще всего состоит из коллектора, который помещается над воронкой, соединенной с контейнером (рисунок I.3.3). Размеры приемного отверстия коллектора не имеют существенного значения. В некоторых странах применяются осадкомеры с приемным отверстием площадью 1 000 см², но, возможно, наиболее подходящей будет площадь 200–500 см². Площадь приемного сосуда может быть равной 0,1 площади приемного отверстия. Какой бы размер коллектора не был выбран, градуировка измерительного устройства должна ему обязательно соответствовать. Наиболее важные требования, предъявляемые к осадкомеру, — следующие: a) ободок коллектора должен иметь острый край и быть строго вертикальным внутри и пологим снаружи; конструкция снегомеров должна быть такой, чтобы ошибки из-за скопления мокрого снега вокруг ободка были незначительны; b) площадь приемного отверстия должна быть известна с точностью до 0,5 %, а конструкция осадкомера должна быть такой, чтобы эта площадь оставалась постоянной; c) коллектор должен быть сконструирован так, чтобы не происходило раз브рызгивания дождя из него и попадание брызг в него; этого можно достичь при условии, если вертикальная стенка достаточно высока и наклон воронки достаточно пологий (по крайней мере 45°); d) контейнер должен иметь узкое входное отверстие и быть в достаточной мере защищенным от воздействия солнечных лучей, чтобы свести потери за счет испарения до минимума; e) в условиях, когда часть осадков поступает в виде снега, коллектор должен быть достаточно глубоким, чтобы накапливать осадки, поступающие в течение суток; глубина коллектора также важна для предотвращения выдувания уловленного снега.

Осадкомеры, предназначенные для установки в местах, где отсчеты по ним возможно производить только один раз в неделю или месяц, должны быть сходны по устройству с суточными осадкомерами, но иметь более вместительный приемный сосуд и более прочную конструкцию.
Суммарные осадкомеры

Суммарные осадкомеры используются для измерения общего количества сезонных осадков в отдаленных, малодоступных районах. Они состоят из коллектора, помещенного над воронкой, соединенной с контейнером, объем которого достаточно для того, чтобы вместить сезонный сбор. При установке этих осадкомеров и их защите от ветра следует соблюдать правила, указанные в предыдущих разделах.

В районах, где наблюдаются обильные снегопады, контейнер следует помещать на высоте, превышающей ожидаемую максимальную высоту снежного покрова. Для этой цели можно смонтировать весь осадкомер целиком на высокой опоре, или только контейнер установить на опорной стальной трубе диаметром 30 см и такой длины, чтобы контейнер возвышался над поверхностью снежного покрова при его максимальной высоте.

В контейнер может быть помещен раствор антифриза для превращения снега, попадающего в осадкомер, в жидкость. Смесь, состоящая по весу из 37,5 % технического хлористого кальция (степень чистоты 78 %) и 62,5 % воды, позволяет получить удовлетворительный антифриз. Кроме того, можно использовать раствор этиленгликоля. Хотя этот раствор более дорогой, он является менее коррозийным, чем хлорид кальция, и предохраняет от замерзания при большей степени разбавления, которое происходит в результате последующего попадания осадков. Объем раствора, первоначально помещаемого в контейнер, не должен превышать одной трети общего объема осадкомера.

Для уменьшения испарения в контейнер следует налить небольшое количество масла. Толщина слоя масла должна быть около 8 мм. Рекомендуется неочищенные моторные масла низкой вязкости. Трансформаторные и силиконовые масла признаны неприемлемыми.

Сезонный сбор осадков определяется путем взвешивания или измерения объема содержимого контейнера. При этом и другим способе необходимо учитывать количество антифриза, помещенного в контейнер в начале сезона.

Методы измерения

Для измерения количества осадков, собранных в обычных осадкомерах, как правило, используются два при способления: градуированный мерный стакан и градуированная рейка.

Мерный стакан должен изготавливаться из прозрачного стекла с низким коэффициентом термического расширения и иметь четкую метку, указывающую размер или тип осадкомера, с которым он должен использоваться. Его диаметр должен составлять не более одной трети диаметра приемного отверстия прибора.

Деления следует наносить четко. Рекомендуется наносить деления с интервалом 0,2 мм и четко отмечать линии каждого миллиметра. Кроме этого, желательно, чтобы была отмечена линия, соответствующая 0,1 мм. Если нет необходимости измерять осадки с такой точностью, то деления в 0,2 мм наносятся, по крайней мере, до деления 1,0 мм, а далее идут деления, соответствующие целым миллиметрам, причем каждый десяток миллиметров отмечается особенно четкой линией. Для достижения необходимой точности максимальная погрешность делений не должна превышать ± 0,05 мм около/или выше отметки 2 мм и ± 0,02 мм ниже этой отметки.

Для того чтобы измерить небольшое количество осадков с адекватной точностью, внутренний диаметр мерного стакана должен быть сужен у основания. При всех измерениях уровень воды определяется по нижнему краю его мениска. При снятии показаний мерный стакан следует держать вертикально во избежание ошибок параллакса. Нанесение основных линий деления на обратную сторону стакана также помогает уменьшить количество таких ошибок.

Мерные рейки следует изготавливать из кедра или другого подходящего материала, который мало поглощает воду и имеет незначительный эффект капиллярности.

Деревянные мерные рейки непригодны в том случае, если в коллектор для уменьшения испарения добавлено масло; в этом случае рекомендуется использовать рейки из металла или других материалов, с которых легко удаляется масло.

Во избежание быстрого износа они должны иметь латунное основание. Их градуировка производится в соответствии с отношением площадей приемного отверстия осадкомера и лаборатории с учетом поправки на вытеснение воды самой мерной рейкой. Деления должны наноситься через каждые 10 мм. Максимальная ошибка в градуировке мерной рейки не должна превышать ± 0,5 мм в любой точке. Измерения, проводимые при помощи мерной рейки, рекомендуется, где это возможно, проверять по мерному стакану.

Также можно измерять собранное количество осадков точным взвешиванием. Этот метод имеет некоторые преимущества. Определяется общий вес мерного сосуда и его содержимого, затем вычитается вес сосуда, который известен заранее. В этом случае нет опасности
разлить воду, и любое количество жидкости, оставшееся в мерном сосуде, включается в этот вес. Но обычно используемые методы являются, однако, более простыми и дешевыми.

3.3.5 Ошибки и точность отсчетов
Если считывание показаний проводится достаточно аккуратно, то ошибки при измерении осадков будут невелики по сравнению с ошибками, возникающими из-за неудачного выбора места для осадкомерного поста. Отсчеты по суточным осадкомерам следует производить с точностью до более измерительных стаканов или мерных рейек, вытекание некоторой части воды при переливании ее из ведра в стакан, а также невозможность перелить всю воду без остатка из ведра в стакан.

К перечисленным ошибкам можно добавить ошибки, возникающие вследствие испарения жидкости из контейнера. Эти потери достигают значительной величины только в странах с сухим жарким климатом и при редких посещениях осадкомерных постов. Потери на испарение можно снизить, если налить в ведро некоторое количество масла или сконструировать осадкомер таким образом, чтобы поверхность испарения воды была гладкой, вентиляция — незначительной, и также было бы предотвращено засорение поверхности водой при переливании ее из ведра в стакан, а также невозможно переливать всю воду без остатка из ведра в стакан.

В тех районах, где часто после дождя сразу наступает морозная погода, можно предупредить повреждения осадкомеров таким образом, чтобы поверхность испарения воды была невелика, вентиляция — незначительной, а также было бы предотвращено чрезмерное повышение температуры внутренних стенок калориметра. Кроме этого, приемная поверхность осадкомера должна быть гладкой для того, чтобы дождевые капли не приставали к ней. Ее никогда не следует красить.

Величины месячных поправок изменяются от 10 до 40 %, в зависимости от методики оценки метеорологических факторов, которые влияют на эту поправку. Основные составляющие систематической ошибки при измерении осадков приведены в таблице I.3.1.

3.3.6 Корректировка систематических ошибок
В результате влияния ветра, потерь на испарение, осадков, испарения жидкости из контейнера, выпадения снега и разбрызгивания дождевых капель — измеренное количество осадков обычно ниже (на 3–30 % и более), чем их фактическое количество, достигающее поверхности земли. Эта систематическая ошибка должна корректироваться, прежде чем данные будут использованы в гидрологических расчетах (ВМО, 1982 г.). Введение поправок, исходные данные об осадках следует надежно заархивировать, и при публикации все данные должны быть четко обозначены, в зависимости от их назначения, как «измеренные» и «скорректированные».

Корректировка этих данных обычно основана на связи компонентов ошибок с метеорологическими факторами. Например, потери осадков за счет измерения поля ветра над приемным отверстием осадкомера зависят от скорости ветра и структуры осадков.

В том случае, если поправки необходимо вводить ежедневно, данные о вышеприведенных метеоэлементах следует получать в результате метеорологических наблюдений, проводимых на метеоплощадке, где проводилось измерение осадков, или в непосредственной близости от осадкомерного поста. Там, где наблюдения за этими метеоэлементами не ведутся, поправки необходимо проводить за более длительные периоды времени, например за месяц.

Величины месячных поправок изменяются от 10 до 40 %, в зависимости от методики оценки метеорологических факторов, которые влияют на эту поправку. Экспериментально рассчитанная для различных осадкометров поправка k на изменение поля ветра над отверстием осадкомера приведена на рисунке I.3.4. Она зависит от двух переменных: скорости ветра и потерь на испарение, и скорости выпадения частиц осадков, которая, в свою очередь, зависит от структуры осадков.

Абсолютное значение ошибки из-за потерь на сушку и испарение зависит от геометрических характеристик материала приемного коллектора и ведра осадкомера,
Таблица I.3.1. Основные компоненты систематической ошибки при измерении осадков и их метеорологические и инструментальные факторы, перечисленные в порядке их значимости

\[P_i = k P_c = k (P_g + \Delta P_1 + \Delta P_2 + \Delta P_3 + \Delta P_4 - \Delta P_5), \]

где \(P_i \) — скорректированное количество осадков, \(k \) — поправочный коэффициент, \(P_c \) — величина осадков, собранных в коллекторе прибора, \(P_g \) — измеренное количество осадков в осадкомере, \(P_1-P_5 \) — поправки для компонентов систематической ошибки, которые определены ниже:

<table>
<thead>
<tr>
<th>Обозначение</th>
<th>Составная часть ошибки</th>
<th>Величина</th>
<th>Метеорологические факторы</th>
<th>Инструментальные факторы</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>Потери по причине деформации ветрового поля над приемным отверстием осадкомера</td>
<td>2–10% 10–50%</td>
<td>Скорость ветра над осадкомером во время выпадения осадков и структура осадков</td>
<td>Форма, площадь приемного отверстия и толщина обода осадкомера и приемного коллектора</td>
</tr>
<tr>
<td>(\Delta P_1 + \Delta P_2)</td>
<td>Потери жидкости за счет смачивания внутренних стенок коллектора и жидкости, остающихся в контейнере после его опорожнения</td>
<td>2–10%</td>
<td>Интенсивность, вид и количество осадков, время высыхания осадкомера и частота опорожнения контейнера</td>
<td>Такие же, как в предыдущем случае, а также материал, цвет и срок службы коллектора и контейнера осадкомера</td>
</tr>
<tr>
<td>(\Delta P_3)</td>
<td>Потери за счет испарения из контейнера</td>
<td>0–4%</td>
<td>Вид осадков, дефицит насыщения и скорость ветра на уровне приемного отверстия осадкомера за период, прошедший от момента прекращения осадков до их измерения</td>
<td>Площадь приемного отверстия и изоляция контейнера, цвет, и, в некоторых случаях, срок службы коллектора, или тип воронки (жесткий или съемный)</td>
</tr>
<tr>
<td>(\Delta P_4)</td>
<td>Разбрызгивание или забрызгивание</td>
<td>1–2%</td>
<td>Интенсивность дождя и скорость ветра</td>
<td>Форма и толщина коллектора осадкомера и тип установки осадкомера</td>
</tr>
<tr>
<td>(\Delta P_5)</td>
<td>Задувание снега</td>
<td></td>
<td>Интенсивность и продолжительность снежного шторма, скорость ветра и состояние снежного покрова</td>
<td>Форма, площадь приемного отверстия и толщина обода и коллектора осадкомера</td>
</tr>
</tbody>
</table>

* Для снега

Количество измерений осадков, а также количество, частоты выпадения и вида осадков. Для жидких, твердых и смешанных осадков величина поправки отличается и должна определяться вз вещиванием или объемными измерениями в лабораторных условиях. Потери на смячивание для твердых осадков обычно меньше, чем для жидких, поскольку приемный коллектор при снеготаянии обычно смячивается только один раз.

Суммарные месячные потери на смячивание \(\Delta P_i \) можно определить по уравнению:

\[\Delta P_i = \bar{a} M, \]

где \(\bar{a} \) — средние суточные потери на смячивание для данного осадкомера, а \(M \) — количество дней с осадками.

В случае, когда осадки измеряются чаще одного раза в день, суммарные месячные потери равны:

\[\Delta P_{i,2} = a_s M_p, \]

где \(a_s \) — средние потери на смячивание за одно измерение осадков для данного осадкомера и вида осадков, а \(M_p \) — количество измерений осадков в течение рассматриваемого периода.

Потери на испарение можно определить следующим образом:

\[\Delta P_j = i_j \tau_j, \]

где \(i_j \) — интенсивность испарения и \(\tau_j \) — время, прошедшее за период между окончанием осадков и их измерением. Величина \(i_j \) зависит от конструкции, материала и цвета осадкомера, вида и количества осадков, дефицита насыщения воздуха (гПа), а также от скорости ветра на уровне приемника осадкомера при испарении. Величину \(i_j \) трудно оценить теоретически из-за сложной конфигурации осадкомера. Однако ее значение вычисляется по эмпирическому уравнению или по графику, как показано на рисунке I.3.5. Величина \(i_j \) может быть определена при помощи самописца осадков, но она также зависит и от количества измерений за день. Ее значение для жидких осадков при двух
измерениях в день составляет от 3 до 6 часов и 6 часов для снега, поскольку испарение происходит и в течение его выпадения.

Абсолютная величина ошибки за счет разбрызгивания из ведра или попадания брызг в ведро может быть как положительной, так и отрицательной, поэтому ее величина почти для всех типов правильно сконструированных осадкомеров принимается равной нулю (3.3.2). Ошибку за счет задувания снега в осадкомер следует учитывать при скорости ветра более 5 м∙с–1. Ее полусуточные значения могут определяться прямо у осадкомера при помощи визуальных наблюдений за продолжительностью метели, а также на основе имеющихся данных о скорости ветра и количестве дней с задуванием и выдуванием снега. Многолетние средне-месячные значения ошибок можно определить из графика на рисунке I.3.6, если известна продолжительность снегопада и скорость ветра.

![Рисунок I.3.4. Поправочный коэффициент \(k \) как функция скорости ветра за период времени выпадения осадков на высоте приемного отверстия осадкомера \((u_{ph}) \) и параметра структуры осадков \(N \) и \(t \) для: а) жидких осадков; и б) твердых и смешанных осадков; 1 — осадкомер Хелмана без ветровой защиты; 2 — осадкомер Третьякова с ветровой защитой; \(t \) — температура воздуха во время метели; \(N \) — доля в процентах от среднемесячной суммы дождей с интенсивностью менее 0,03 мм∙мин–1 (ЮНЕСКО, 1978 г.)](image1)

![Рисунок I.3.5. Потери в результате испарения из осадкомеров](image2)

Примечание. Интенсивность испарения \((i) \) для различных осадкомеров: а) жидкие осадки: i) австралийский стандартный осадкомер 1, 2, 7, 11 для \(P \leq 1 \text{ мм} \); 1,1–20 мм; > 20 мм (все для скорости ветра \(u_{ph} > 4 \text{ м∙с}^{-1} \)), и для \(u_{ph} \leq 4 \text{ м∙с}^{-1} \) соответственно; ii) снеговой заглубленный осадкомер 3, 6, 8 для \(P \leq 1 \text{ мм} \), 1,1–10 мм и \(\geq 10 \text{ мм} \) соответственно; iii) осадкомер Хелмана 4; iv) польский стандартный осадкомер 5; v) венгерский стандартный осадкомер 9; vi) осадкомер Третьякова 10, 12, 13, 14 для скорости ветра от 0 до 2, 2 до 4, 4 до 6 и 6 до 8 м∙с–1 соответственно; b) твердые осадки: осадкомер Третьякова 15, 16, 17, 18 для скоростей ветра от 0 до 2, 2 до 4, 4 до 6 и 6 до 8 м∙с–1 соответственно, где \(i = \) интенсивность испарения, мм∙ч–1 и \(\tau_s \) — время, прошедшее за период между окончанием осадков и их измерением.

![Рисунок I.3.6. Многолетняя сезонная интенсивность задувания снега \((i_b) \) как функция средней многолетней скорости ветра \((u_b) \) на уровне анемометра (10–20 м) в течение периода задувания снега](image3)
Помимо рассмотренных видов систематических ошибок, существуют также случайные ошибки, возникающие в результате ошибок наблюдений и ошибок при пользовании приборами, но ими часто пренебрегают из-за их незначительной, по сравнению с систематическими ошибками, величины.

3.4 САМОПИШУЩИЕ ОСАДКОМЕРЫ [ГОСМС С53]

При меняются 5 типов плювиографов: весовой, поплавковый, с опрокидающимся сосудом, дисдрометр и акустический. Из этих плювиографов для измерения всех видов осадков подходят только весовой плювиограф или плювиограф, основанный на инерционном/оптическом принципе обнаружения. Другие в основном используют для измерения жидких осадков.

3.4.1 Весовой плювиограф

В приборах этого типа ведется постоянная запись веса контейнера вместе с собранными в нем осадками с помощью пружинных или рычажных весов. Таким образом, записывается вес всего количества осадков с момента их выпадения. Обычно этот тип прибора не имеет приспособления для удаления из него собранных осадков, но с помощью системы рычагов можно заставить перо пересекать ленту любое количество раз. Такие приборы следует конструировать так, чтобы предотвратить чрезмерные потери на испарение, которые впоследствии могут быть дополнительно снижены путем добавления в контейнер достаточного количества масла или другого ретарданта для создания пленки на поверхности воды. Колебания весов во время сильных ветров можно уменьшить, используя масляный демпфер. Приборы такого типа особенно полезны для записи осадков в виде снега, града и смеси снега с дождем, так как для записи количества таких твердых осадков их не нужно растапливать.

3.4.2 Поплавковый плювиограф

В этом приборе жидкие осадки попадают в поплавковую камеру, в которой находится поплавок. Когда уровень воды в камере повышается, вертикальное перемещение поплавка преобразуется в движение пера по разграфленной бумаге. Требуемый масштаб записи можно установить путем настройки размеров приемного отверстия коллектора, поплавка и поплавковой камеры.

Для того, чтобы произвести запись за какой-либо выбранный период времени (обычно не менее, чем за 24 часа), необходимо иметь или очень большую поплавковую камеру (в этом случае получают сжатый масштаб записи на ленте), или какой-то механизм для автоматического быстрого слива жидкости из поплавковой камеры, как только она наполнится, для того чтобы перо вернулось к нижней кромке ленты. Для слива осадков обычно используется приспособление сифонного типа. Процесс выпивания воды следует начинать в точно установленный момент так, чтобы вода не переливалась через край ни в начале, ни в конце процесса, который не должен занимать больше 15 секунд. В некоторых приборах поплавковая камера устанавливается на рычаге весов с помощью опорных призм для того, чтобы наполненная камера перевешивала. Подъем воды облегчает процесс слива, и когда камера опорожняется, она возвращается в первоначальное положение. Некоторые плювиографы имеют механизм принудительного слива, который помогает производить процесс слива менее чем за пять секунд. У плювиографа с принудительным сливом имеется небольшая камера, отделенная от основной, в которой собираются жидкие осадки, выпадающие в момент слива. Вода из этой камеры поступает в основную камеру, когда прекращается слив, что гарантирует правильность записи общего количества жидких осадков.

Во избежание замерзания воды в поплавковой камере в зимний период, в плювиографе должен устанавливаться обогревательный прибор. Это предотвратит повреждение поплавка и поплавковой камеры и даст возможность регистрировать количество жидких осадков в зимний период. Там, где есть сеть электропитания, достаточно небольшой нагревательный элемент или маломощной электрической лампочки, в противном случае можно использовать другие источники питания. В этих целях удобно использовать короткую спираль, которая наматывается на коллектор и присоединяется к батарее большей мощности. Количество подаваемого тепла не должно превышать минимума, необходимого для предотвращения замерзания, поскольку излишнее тепло может снизить точность наблюдений, создавая вертикальное перемещение воздуха над прибором наблюдений и увеличивая потери за счет испарения.

3.4.3 Плювиограф с опрокидающимся сосудом

Принцип его действия очень прост. Легкий металлический контейнер (челнок), разделенный на два отведения, находится в неустойчивом равновесии относительно горизонтальной оси. В нормальном положении он описывается на один из двух ограничителей, что мешает ему окончательно перевернуться. Вода попадает из коллектора в то отделение, которое в данный момент находится выше. После того, как определенное количество воды окажется в этом отделении, членок теряет устойчивость и наклоняется к другому ограничителю.
Отделения контейнера (челнока) имеют такую форму, что вода вытекает из того, которое находится в данный момент ниже. Тем временем осадки собираются в том отделении, которое находится выше. Движение челнока в тот момент, когда он наклоняется, можно использовать для приведения в действие контактного реле, с помощью которого получаются записи прерывистых линий. Расстояние между линиями соответствует времени, за которое выпадает определенное не большое количество осадков. Если необходимо получить подробную запись, это количество осадков не должно превышать 0,2 мм. Для ряда гидродинамических целей, особенно в районах с ливнями большой интенсивности и при использовании данных в системах предупреждения паводков, достаточным является количество осадков от 0,5 до 1,0 мм.

Основным преимуществом прибора такого типа является то, что он позволяет получить на «выходе» электронный импульс и поэтому может быть использован для получения наблюдений на расстоянии, а также для получения одновременных наблюдений за осадками и уровнем воды, осуществляемых при помощи соответствующего самописца. Недостатки же его — следующие:

a) для того чтобы челнок наклонился, необходимо небольшое, но определенное время. Во время первой половины движения челнока в то отделение, в котором находится уже вычисленное количество осадков, может попасть еще какое-то их количество. Эта погрешность может стать значительной в случае интенсивного выпадения осадков (Parsons, 1941);
b) при обычной конструкции челнока открытая поверхность воды в соотношении с объемом довольно большая, поэтому возможны значительные потери из-за испарения, особенно в регионах с жарким климатом. Эта ошибка будет наиболее значительной в случае слабого дождя;
c) прерывистый характер записи может не дать удовлетворительных данных во время слабой мороси и очень слабого дождя. В частности, невозможно определить время начала и конца выпадения осадков.

3.4.5 Дисдрометры

Дисдрометры измеряют спектр частиц осадков либо через импульс, переданный преобразователю, поскольку атмосферные осадки ударяют о датчик, либо через отражающую способность осадков, подсвеченные светом или микроволнами (Bringi and Chandrasekar, 2001). Их главное преимущество заключается в том, что они дают исчерпывающие сведения о классификации осадков по размерам (рисунок I.3.7). Эти устройства доступны в промышленном масштабе, хоть и по высокой, по сравнению с осадкомерами с опрокидывающимся сосудом, цене.

3.4.6 Акустический плювиограф

Измерение количества осадков над озерами и морем особенно проблематично. Однако шум от капель дождя, попадающих на водную поверхность, можно обнаружить с помощью чувствительных микрофонов. Шумовой спектр показывает распределение размеров дождевых капель, и, следовательно, количество осадков. Такие системы сейчас доступны в промышленных масштабах. Акустические профилометры, созданные для измерения профилей ветра над земной поверхностью, также могут измерять количество осадков.

3.4.7 Методы записи данных

Независимо от того, как действует плювиограф, регистрирующий жидкые осадки, — путем поднятия поплавка, при помощи самоопорожнения контейнера...
3.5 СНЕГ И ГРАД (ГОСМ С53)

Снег, который скапливается в водосборном бассейне, является естественным источником, формирующим значительную часть запасов воды в бассейне. В этом разделе рассматриваются процедуры измерения снежного покрова. Вопросы проведения снегометрических съемок и проектирования сетей снежного покрова рассматриваются в пункте 2.4.2. Руководящие указания по применению путниковых дистанционного зондирования снежного покрова представлены в разделе 3.13. Дополнительные сведения по измерениям снежного покрова представлены в публикации "Snow Cover Measurements and Areal Assessment of Precipitation and Soil Moisture" (Измерения снежного покрова и пространственная оценка осадков и влажности почвы) (WMO-№. 749).

При сильных ветрах показания обычных снегомерных континеров без защитных крессовок становятся ненадежными и в результате заострения вокруг их приемных отверстий. Обычно такие континеры увлажняют значительно меньше количество снега, чем континеры с крессовками. С другой стороны, несмотря на применение крессовок, могут возникнуть значительные погрешности в результате попадания в континер снега, переносимого ветром в горизонтальном направлении. Эти погрешности можно
Глава 3. Измерение количества осадков

3.5.2 Водный эквивалент снега

Водный эквивалент свежевыпавшего снега — это эквивалентное количество жидкости, содержащееся в данном количестве свежевыпавшего снега. Его определяют одним из методов, описанных ниже, при этом важно взять несколько репрезентативных проб:

а) взвешивание или растапливание снежных проб: при помощи снегомера можно брать цилиндрические пробы свежевыпавшего снега, а затем взвешивать или растапливать их (полученный цилиндр снега называется снежным столбом);

б) измерение количества снега посредством осадкомера: снег, собранный в нерегистрирующих осадкомерах, следует сразу же после каждого наблюдения растопить и измерить при помощи градуированного измерительного стакана.

Для определения водного эквивалента снега также можно использовать весовой плювиограф. В периоды снегопадов с приборов следует снимать воронки, чтобы осадки попадали непосредственно в контейнер. Снежные столбы широко используются на западе Соединенных Штатов Америки, где функционирует сеть SNOw TELemetry (SNOTEL), содержащая более 500 осадкомеров. Из-за высоких скоростей ветра при прохождении теплых фронтов наблюдается высокая скорость таяния.

3.5.3 Снежный покров

3.5.3.1 Снегомерные маршруты

Снегомерный маршрут — это заранее намечённая промерная линия в определённом районе, где каждый год проводятся снегомерные съёмки. Снегомерные маршруты должны тщательно выбираться с тем, чтобы измерение водного эквивалента из года в год давало надежный показатель содержания воды в снежном покрове по всему бассейну.

В горных районах выбор пригодных снегомерных маршрутов представляет собой нелёгкую задачу из-за неоднородного характера местности и значительного влияния ветра. Правильно выбранные маршруты снегомерной съёмки в горных районах должны отвечать следующим требованиям:

а) при измерении общей высоты сезонного покрова снегомерные маршруты должны располагаться на такои высоте над уровнем моря и быть таким образом ориентированы, чтобы таяние снега на них было незначительным или вообще отсутствовало до образования максимального снежного покрова;

б) для того чтобы снегомерные съёмки можно было проводить непрерывно, наблюдательные площадки маршрута должны располагаться в достаточно доступных местах;

c) при измерениях в районах лесных массивов, где деревья препятствуют попаданию снега на землю, снегомерные маршруты должны пролегать на открытых, достаточно свободных площадках;

d) в целях снижения до минимума эффектов ветрового перемещения снежного покрова эти маршруты должны иметь достаточную защиту от ветра.

Критерии выбора пригодного снегомерного маршрута такие же, как и критерии для выбора места для осадкомерного поста для проведения наблюдений за выпавшим снегом.

На ровной местности снегомерный маршрут должен проходить так, чтобы средний водный эквивалент на этом маршруте максимально представлял фактический средний эквивалент снега, выпадающего в данном районе. Таким образом, желательно иметь снегомерные маршруты на различных ландшафтах, например на открытых пространствах и в лесах с разными условиями аккумуляции снега.

Если снежный покров в данном районе однороден и равномерно распределен, и если существует пространственная корреляционная зависимость толщины снега или запасов воды в снеге, то для вычисления средней величины снегозапасов с заданной точностью необходима информация о длине снегомерного маршрута и количестве точек измерений на нем.

3.5.3.2 Точки измерения

Измерение высоты снежного покрова на снегомерном маршруте в горной местности проводится путем взятия проб в точках, удаленных друг от друга от 20 до 40 м. На больших открытых пространствах, где снег сносится ветром, проб потребуется больше. Ввиду того, что в начале проведения работ сведений о тенденции ветрового перемещения снега недостаточно, целесообразно произвести обширную снегомерную съёмку по длинным промерным линиям и с большим количеством измерений. Количество измерений можно сократить после того, как будет установлена длина и ориентация снежных наносов. На ровной местности, в зависимости от местных условий, расстояние между промерными точками для определения плотности снега должно составлять 100–500 м. Высоту снежного покрова на снегомерном маршруте рекомендуется также измерять между точками взятия проб, примерно в пяти точках, расположенных на равном расстоянии друг от друга.
Каждая промерная точка определяется измерением соответствующего расстояния от контрольной точки, указанной на карте снегомерного маршрута. В качестве меток контрольных точек могут устанавливаться рейки такой высоты, чтобы они были выше самого глубокого снега. Эти рейки смешиваются от снегомерного маршрута настолько, чтобы не нарушить снежного покрова. Места для взятия проб определяются напротив каждой из контрольных точек. Контрольных точек может быть столько, сколько необходимо для того, чтобы свести до минимума количество возможных ошибок при определении места взятия пробы. Поверхность почвы должна быть очищена от камней, ина и расчищена на два метра во всех направлениях от каждой точки, где берется проба.

Рекомендуется обходить водотоки и неровные участки на расстоянии не менее 2 м. Если снегомерный маршрут проходит по лесистому участку, и для мест взятия проб используются небольшие прогалины, местоположение каждой точки может определяться по двум или трем помеченным деревьям.

3.5.3.3 Снаряжение для взятия проб снега

В комплект снаряжения для взятия проб снега обычно входят: металлический или пластмассовый цилиндр (иногда разделенный на секции для облегчения его транспортировки), нижний конец которого снабжен резцом, а на наружной стороне по всей длине цилиндра нанесена шкала для измерения высоты снега; пружинные или рычажные весы для определения веса взятой пробы снега; проволочная подвеска для подвешивания цилиндра во время взвешивания; набор инструментов для сборки и разборки снегомера. Типовой набор оборудования для взятия проб при глубоком снежном покрове, изображенный на рисунке I.3.8, можно описать следующим образом:

a) резец: резец должен быть сконструирован таким образом, чтобы он мог проникать сквозь снег различных видов, сквозь наст и ледяные прослойки, а в некоторых случаях и сквозь слой льда довольно значительной толщины, который может образоваться близ поверхности почвы. Резец не должен уплотнять снег, чтобы внутрь него не попало излишнее количество снега. При захватывании резцом основания пробы, последнее должно настолько плотно пристать к стенкам резца, чтобы проба не высыпалась из цилиндра при его извлечении из снежного покрова. Резцы небольшого диаметра удерживают пробу значительно лучше, чем резцы большого размера, но больший объем пробы повышает точность взвешивания. Зубья резца должны иметь такую форму, чтобы отводить назад ледяные осколки. Резец должен быть насколько возможно более тонким, но все же несколько выступать за внешний край цилиндра. При такой конструкции ледяные осколки отходят в сторону после выхода из-под резца. Горизонтальная поверхность резца должна иметь слабый обратный уклон для того, чтобы ледяные осколки не попадали внутрь цилиндра; необходимо следить, чтобы резец был всегда наточен и оставлял небольшой зазор между пробой снега и внутренней стенкой цилиндра. Большое число зубьев на резце создает плавный ход при вырезании пробы снега и способствует очищению резца от больших кусков льда;

b) цилиндр снегомера: в большинстве случаев внутренний диаметр цилиндра бывает больше внутреннего диаметра резца. Проба снега поэтому теоретически может подниматься вверх по цилинду с минимальным трением о его стенки. При нормальном состоянии снега проба все же касается стенок цилиндра и трется о них. Поэтому стенки цилиндра должны быть гладкими для того, чтобы проба могла подниматься вверх без излишнего трения. В большинстве случаев цилинды изготовляются из алюминиевого сплава и анодируются. Хотя поверхность цилиндра может казаться гладкой, все же нет гарантии, что не произойдет прилипания снега, особенно при взятии пробы влажного весеннего снега с крупно-зернистой структурой. Натирание внутренней стороны цилиндра воском может уменьшить прилипание. Некоторые цилиндры снабжены прорезями, через которые можно установить длину снежной колонки пробы. Вообще вследствие сжатия, особенно при взятии пробы влажного снега, длина пробы внутри цилиндра может существенно отличаться от истинной высоты снежного покрова, измеренной по шкале, нанесенной на внешней стенке цилиндра. Через прорези можно также вводить внутрь цилиндра инструмент для
Глава 3. Измерение количества осадков

3.5.3.4 Процедура взятия проб

Местоположение точек взятия проб определяется по расстоянию от реперных точек, отмеченных на карте снегомерного маршрута. Смещение точек измерения более чем на несколько метров может привести к существенной ошибке.

Для взятия пробы снега цилиндр снегомера вдавливают вертикально в снежный покров, пока резец не коснется поверхности почвы. Если состояние снега позволяет, то лучше всего осуществлять равномерный нажим, для того чтобы обеспечивать непрерывное поступление снега в цилиндр. Не прерывая равномерного вдавливания, можно несколько поворачивать цилиндр по часовой стрелке; это введет в действие резец, что необходимо для быстрой проходки тонких прослоек льда.

Когда резец цилиндра, находящегося в вертикальном положении, достигнет поверхности почвы и слегка погрузится в нее, на шкале отсчитывают две метки, совпадающие с верхней поверхностью снежного покрова.

Далее определяют, насколько внизу находится нижняя поверхность снежного покрова, полученную величину вычитают из первой отсчета и разность записывают. Эта окончательная величина высоты снега имеет большое значение, так как она используется для вычисления плотности снега.

Для того чтобы предотвратить высыпание снега, через резец во время извлечения снегомера из снежного покрова, резцом захватывают небольшое количество снега, служащее пробкой. Количество захваченной почвы определяется в зависимости от состояния снежного покрова.

Для того чтобы удержать в цилиндре размокший снег, может потребоваться 25-миллиметровый слой плотной почвы. Следы почвенного слоя, приставшие к нижнему концу пробы, показывают, что высыпания пробы не было.

Длина колонки захваченной пробы снега просматривается через прорези в цилиндре и отсчитывается по шкале на наружной его стороне. В отсчет вводится поправка на слой почвы и посторонние предметы, захваченные резцом. Эта поправка служит также доказательством того, что взята полная проба снега.

Измерение в каждой точке заканчивается щадящим взвешиванием пробы снега в цилиндре снегомера.

По шкале весов можно непосредственно отсчитать вес пробы снега, выраженный в сантиметрах высоты эквивалентного слоя воды. Плотность снега вычисляется путем деления водного эквивалента снега на высоту снежного покрова. Плотность снега обычно остается более или менее постоянной на протяжении его чистки. Наличие прорезей создает то преимущество, что можно немедленно обнаружить ошибки вследствие закупорки цилиндра, и отбросить все явно неудачные пробы. В то же время через прорези в цилиндр может попасть лишнее количество снега и увеличить измеренный водный эквивалент снега;

c) весы: стандартным способом измерения запаса воды в пробе снега является взвешивание пробы, взятой цилиндром снегомера. Проба оставляется в цилиндре и взвешивается вместе с ним. Вес цилиндра известен.

Взвешивание обычно производится с помощью пружинных весов или специального безмена. Пружинные весы наиболее практичны, потому что ими легко пользоваться даже при сильном ветре. Однако точность взвешивания ими составляет около 10 г, поэтому при небольшой высоте снега и при пользовании снегомером с малым диаметром цилиндра отдельные ошибки взвешивания могут быть значительными. Рычажные весы могут отличаться большей точностью, но пользоваться ими очень трудно, особенно при ветре. Сомнительно, чтобы можно было использовать большую точность этого прибора, разве только в безветренную погоду.

Другой способ измерения запаса воды в пробе снега состоит в том, что пробы ссыпаются в пластмассовые контейнеры или пакеты и отсылаются на базовую станцию, где их можно либо точно взвесить, либо снег растопить и измерить мензуркой количество образовавшейся воды. Практически этот способ трудноосуществим, поскольку пробы должны быть ссыпаны без потерь, снабжены подробной этикеткой и отправлены на базу. Преимущество измерений в поле состоит в том, что можно легко обнаружить грубые ошибки, вызванные закупоркой цилиндра или высыпанием из цилиндра части взятой пробы, и немедленно проверить измерения.
всего снегомерного маршрута. Резкое отклонение от средней плотности указывает, как правило, на ошибку измерения в данной точке.

3.5.3.5 Точность измерений
Точность измерений толщины снега или содержания воды в снеге в конкретной точке снегомерного маршрута зависит от цены деления шкалы прибора и от инструментальных и субъективных ошибок.

3.5.3.6 Высота и площадь снежного покрова
Измерение снежного покрова на больших пространствах и установление местной взаимосвязи с плотностью снега дают возможность аппроксимировать водный эквивалент снежного покрова.

Наиболее общий метод определения высоты снежного покрова, прежде всего в регионах с высоким снежным покровом, — это измерения при помощи градуированной рейки, установленной в таком месте, которое является репрезентативным для данного района и которое может легко просматриваться на расстоянии. Эта процедура приемлема в тех случаях, когда репрезентативность места не вызывает сомнений, и все, что находится непосредственно на самой площадке (приблизительно в радиусе 10 м), защищается от нежелательных вторжений. Показания снимаются в условиях ненарушенного снежного покрова.

Рейки следует окрашивать в белый цвет, чтобы свести до минимума таяние снега вокруг них. Снегомерная рейка должна иметь метровые и сантиметровые деления по всей длине.

В труднодоступных местах рейки снабжаются поперечными перекладинами так, чтобы можно было снимать показания на расстоянии при помощи биноклей, телескопов или используя авиацию. В случае измерений высоты снежного покрова с самолета, визуальное снятие показаний может подкрепляться крупномасштабным фотографированием снегомерных рек, в результате чего данные получаются менее субъективными.

Вертикальная высота снежного покрова может также измеряться при непосредственном наблюдении с помощью градуированного снегомерного цилиндра, как правило, в ходе получения водного эквивалента снежного покрова.

3.5.3.7 Измерение снежного покрова с помощью радиоактивных изотопов
Источники радиоактивных гамма-излучений используются в различных способах измерения водного эквивалента снега. Ослабление интенсивности гамма-излучения может быть использовано для расчета запаса воды в снежном покрове между источником излучения и детектором. При одном типе установки (вертикальном) измеряется общий водный эквивалент выше или ниже излучателя. При другом типе (горизонтальном) водный эквивалент измеряется между двумя вертикально установленными трубками, которые расположены на определенном расстоянии над поверхностью земли.

Для установки радиоизотопных устройств требуется сравнительно дорогое и сложное оборудование. Кроме того, при любом типе установки необходимо принимать соответствующие меры предосторожности, особенно там, где приходится применять довольно сильный источник излучения. В период разработки установки всегда необходимо проконсультироваться в учреждениях, осуществляющих контроль и выдачу разрешений, для того, чтобы избежать впоследствии различных осложнений. Несмотря на то что это ограничивает применение радиоизотопных снегомерных устройств, они являются ценным оружием изучения снежного покрова и дают возможность вести непрерывную запись наблюдений, что особенно ценно в труднодоступных районах.

Вертикальные радиоизотопные снегомеры
Измерение плотности снега с помощью радиоактивных изотопов основано на ослаблении гамма-лучей при их прохождении через определенную среду. Также ослабление зависит от начальной энергии лучей, плотности и толщины вещества, через которое проходят лучи. Для этого метода необходим источник высокой энергии гамма-излучения; часто используется кобальт-60 вследствие его высокой гамма-энергии и продолжительного периода полураспада (5,25 лет).

Свинцовый защитный контейнер с источником излучения помещается в почву таким образом, чтобы верхняя поверхность контейнера находилась на одном уровне с поверхностью почвы, и пучок гамма-лучей был направлен на детектор излучения, расположенный над поверхностью снежного покрова. Детектором является счетчик Гейгера—Мюллера или сцинтилляционный счетчик. Импульсы от счетчика передаются на пересчетное устройство или, в случае необходимости, непрерывной записи, на интегрирующее и записывающее устройство.

Источник излучения может также быть помещен и на некоторой глубине (50–60 см) в почве; при такой установке гамма-лучи будут проходить не только через снежный покров, но и через часть почвенного слоя. Таким образом, в период снеготаяния можно получать данные о количестве воды, просочившейся в почву и
ГЛАВА 3. ИЗМЕРЕНИЕ КОЛИЧЕСТВА ОСАДКОВ

стекшей с ее поверхности. Имеется также и третий способ установки аппаратуры в полевых условиях. Детектор-счетчик излучения помещается над поверхностью почвы, а источник излучения с защитным устройством — над снежным покровом, на высоте, превышающей ожидаемую максимальную высоту снега. При таком расположении аппаратуры уменьшаются температурные колебания, и создается постоянный фон для работы счетчика.

Горизонтальные радиоизотопные снегомеры

Во Франции и Соединенных Штатах Америки разработаны различные модификации телеметрических радиоизотопных снегомерных устройств, снимающих профиль снега по горизонтали и по вертикали и передающих результаты измерений на основные станции по земле, по радио или через спутники. У всех снегомерных устройств измеряющий элемент состоит из двух вертикальных труб одинаковой длины, укрепленных на расстоянии 0,5–0,7 м друг от друга. В одной трубе находится источник гамма-излучения (используется цезий-137 с периодом полураспада 30 лет и активностью 10–30 милликюри), а во второй трубе — детектор (счетчик Гейгера—Мюллера или сцинтилляционный кристалл с фотоумножителем). В процессе измерения профиля специальный движок, работающий синхронно с детектором, передвигает радиоактивный источник вверх и вниз по трубе.

Регистрируя интенсивность горизонтального потока гамма-лучей на различных уровнях слоя снега и обрабатывая полученные данные соответствующим образом на основной станции, можно определить глубину снежного покрова, плотность снега и запас воды в нем на данной глубине, а также средние значения этих параметров. Кроме того, с помощью радиоизотопных устройств можно определить высоту слоя свежевыпавшего снега, количество жидких осадков и интенсивность таяния снега.

Гидростатическое давление внутри подушки является мерой веса снега, лежащего на подушке. Измерение гидростатического давления осуществляется с помощью поплавкового самописца уровня или датчика давления. Измерения с помощью снегомерной подушки отличаются от измерений с помощью стандартных снегомеров, особенно в период снеготаяния. Они особенно надежны, когда снежный покров не содержит ледяных прослоев, которые могут создать перемычку над подушкой. Измерения водного эквивалента снега с помощью снегомерных подушек могут отличаться от измерений стандартным методом взвешивания на 5–10%.

3.5.3.8 Снегомерные подушки

Снегомерные подушки, которые бывают различного диаметра и изготавливаются из различного материала, предназначены для измерения веса снега. Подушки наиболее распространеного типа представляют собой плоские круглые контейнеры диаметром 3,7 м, изготовленные из прорезиненного материала и наполненные незамерзающей жидкостью. Подушки укладывают на землю вровень с поверхностью почвы или покрываются тонким слоем почвы или песка. Для того чтобы предотвратить повреждение оборудования и сохранить снег в его естественных условиях, место установки снегомерной подушки рекомендуется оградить. В нормальных условиях снегомерные подушки могут использоваться в течение 10 лет и более.

Гамма-съемка снежного покрова с самолета

Самолетная съемка дает интегральную площадную оценку водного эквивалента снежного покрова, так как по курсам полета выполняются серии точечных измерений. Этот метод рекомендуется для картографирования запасов воды в снежном покрове в равнинных районах, но он может применяться и в холмистых районах с разностями высот до 400 м. В районах, где заболоченные земли составляют более 10%, измерения водного эквивалента снега, самолетной гамма-съемкой осуществляются только на незаболоченных площадях, а полученные интегральные характеристики распространяют на всю площадь водосбора. Обычная высота полета при гамма-съемке составляет 25–100 м.

Измерение представляет собой суммарные отсчеты в диапазоне больших энергий и спектральные отсчеты по избранным энергетическим уровням. Информация по спектру используется для корректировки на ложную радиацию, наводимую космическими лучами, и радиоактивность атмосферы. Точность самолетной гамма-съемки снежного покрова зависит главным образом от качества измерительной аппаратуры (например, единица работы измерительной аппаратуры), колебаний интенсивности космической радиации и радиоактивности приземного слоя воздуха,
колебаний влажности верхнего 15-сантиметрового слоя почвы, однородности залегания снежного покрова, отсутствия продолжительных оттепелей (например, от стабильности условий полета и ошибок в прокладывании маршрутов полетов). Предполагаемые погрешности составляют ±10 % с нижним пределом примерно 10 мм водного эквивалента.

Детальные эксперименты показали, что стандартное отклонение измерений водного эквивалента снега, выполненных самолетной съемкой на маршруте 10–20 км, составляет около 8 мм и имеет случайный характер.

Для того чтобы определить водный эквивалент снега на площади 3 000 км² с погрешностью, не превышающей 10 %, рекомендуемые длины курсов и расстояние между ними представлены в таблице I.3.2.

Таблица I.3.2. Рекомендуемые длины самолетных курсов (L) и расстояние между курсами (S)

<table>
<thead>
<tr>
<th>Природные зоны</th>
<th>S, км</th>
<th>L, км</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лесостепь</td>
<td>40–60</td>
<td>25–30</td>
</tr>
<tr>
<td>Степь</td>
<td>40–50</td>
<td>15–20</td>
</tr>
<tr>
<td>Лес</td>
<td>60–80</td>
<td>30–35</td>
</tr>
<tr>
<td>Тундра</td>
<td>80–100</td>
<td>35–40</td>
</tr>
</tbody>
</table>

Большое преимущество гамма-съемки состоит в том, что она позволяет получить усредненные данные о снегозапасах для широкой полосы вдоль линии полета. Эффективная ширина этой полосы превышает примерно в 2–3 раза высоту полета. Достоинством гамма-съемки является также то, что интенсивность ослабления гамма-излучения в снежном покрове зависит только от массы воды и не зависит от ее состояния.

Наземная гамма-съемка

Ручной детектор гамма-излучения обеспечивает измерение среднего запаса воды в снежном покрове для полосы шириной около 8 м на всем протяжении снего-мерного маршрута. Наземная гамма-съемка позволяет измерять воды в снежном покрове в диапазоне от 10 до 300 мм. Точность измерений колеблется от ±2 до ±6 мм и зависит от колебаний влажности почвы, распределении снега, а также от стабильности работы измерительной системы.

Для измерения запаса воды в снеге может применяться стационарный наземный детектор (типа счетчика Гейгера–Мюллера или сцинтилляционного кристалла с фотоумножителем), который устанавливается на снего-мерном маршруте. Однако выпадение осадков приводит к переносу значительного количества радиоактивного материала в снежном покрове, поэтому измерения, выполняемые в течение и непосредственно после выпадения осадков подвержены влиянию этой дополнительной радиации.

Распад радиоактивных элементов позволяет измерять запас воды в снеге в течение примерно четырех часов после прекращения осадков. Сравнение отсчетов перед началом снегопада и после него дает информацию об изменении водного эквивалента снежного покрова.

3.5.4 Наблюдение за градом

Прямые измерения распределения размеров градин осуществляются при помощи специального материала, такого как пенопласт (полистирол), размером 1 м х 1 м, на который падают градины, оставляя отпечаток, размер которого можно измерить.

3.6 ОЦЕНКА КОЛИЧЕСТВА ОСАДКОВ ПО ВОДНОМУ БАЛАНСУ ВОДОСБОРА

Эта глава посвящена, прежде всего, измерительным приборам, однако важно подчеркнуть, что комплексные измерения объема ливневого стока могут быть получены из рассмотрения водного уравнения баланса в неизмеримых бассейнах, где невозможно применить измерительное оборудование. Количество воды, просачивающееся в почву, связано с эффективным ливнем, то есть, различием между объемом осадков, достигающим земли, и осадками, которые испаряется от поверхности и растений. Простая гидрологическая модель «вход–хранение–выход» может использоваться, чтобы связать взвешенный речной гидрограф со стокообразующими осадками (глава 4).

3.7 НАБЛЮДЕНИЯ ЗА ОСАДКАМИ С ПОМОЩЬЮ РАДИОЛОКАТОРА [ГОСС С33]

3.7.1 Применение радиолокатора в гидрологии

Радиолокационные установки позволяют проводить наблюдения за местоположением и передвижением областей осадков, и с помощью некоторых из них можно получать данные об интенсивности осадков в пределах действия установки (Bringi and Chandrasekar, 2001). При использовании радиолокатора для гидрологических целей эффективная дальность его действия составляет 40–200 км (European Commission, 2001) в зависимости
от таких характеристик радиолокатора, как направленность антенны, выходная мощность, чувствительность приемника. Гидрологической дальностью действия радиолокатора считается максимальная дальность, на которой связь между интенсивностью отраженного излучения и интенсивностью дождя остается достаточно достоверной. Интенсивность дождя в любой зоне осадков в пределах гидрологической дальности может быть определена, если радиолокатор снабжен соответствующим образом калиброванным антенным приемником.

Осадки ослабляют радиолокационный луч и этот эффект проявляется наиболее сильно при использовании коротковолновых радиолокационных установок. С другой стороны, длинноволновые радиолокационные установки не обнаруживают так легко слабый дождь или снег, как это делают коротковолновые установки. Выбор подходящей длины волны зависит от климатических условий и поставленных задач. Для наблюдений за осадками применяют все три диапазона частот, приведенные в таблице 1.3.3.

Следует понимать, что уравнение 3.4 можно использовать лишь при некоторых допущениях (European Commission, 2001; Meischner, 2003) и, следовательно, весьма вероятно возникновение ошибки, если эти условия не выполняются. Тем не менее оно является основой получения всех радиолокационных оценок осадков с помощью одночастотных радиолокаторов.

Интенсивность дождя (в мм·ч⁻¹) связана с медианным значением диаметра дождевых капель следующим соотношением:

\[\sum d^k = aP_i \]

(3.5)

где \(P_i \) — интенсивность дождя, мм·ч⁻¹; \(a \) и \(b \) — постоянные. Было предложено много определений связи между распределением размеров дождевых капель у поверхности земли, скоростью падения капель разных размеров и интенсивностью дождя. Наиболее часто применяется уравнение:

\[Z = 200 P_i^{1.6} \]

(3.6)

3.7.3 Факторы, влияющие на измерения

Ниже приводится обзор факторов, влияющих на измерения.

3.7.3.1 Длина волны

Применение S-диапазона, как это делается в Соединенных Штатах Америки, устраняет проблемы, связанные с ослаблением радиолокационного сигнала при прохождении его через осадки. Применение C-диапазона в большинстве других стран мира улучшает чувствительность, но приводит к проблемам, связанным с ослаблением сигнала. Системы C-диапазона почти в два раза дешевле, чем системы S-диапазона при тех же размерах антенны, однако это может измениться с введением в будущем технологии настраиваемой лампы бегущей волны (ЛБВ). Для решения проблемы ослабления радиолокационного сигнала метеорологических радиолокаторов C-диапазона были разработаны различные процедуры его корректировки (раздел 3.7.3.4).

3.7.3.2 Помехи от земной поверхности

С целями на поверхности земли могут сталкиваться и главный, и боковые лепестки радиолокационного луча. Это вызывает сильный устойчивый эхо-сигнал, называемый помехами от земной поверхности, который можно ошибочно принять за дождевые осадки. Хотя метеорологические радиолокаторы можно расположить таким образом, чтобы уменьшить эти эхо-сигналы, полностью их избежать невозможно, поэтому следует
использовать другие методы, например доплеровскую обработку с удалением карты помех (Germann and Joss, 2003).

В дополнение к устойчивым эхо-сигналам захват луча поверхностью земли также вызывает затенение или экранирование основной части сигнала. В этом случае только часть энергии указывает на наличие осадков на больших расстояниях. Этот недостаток может быть исправлен, если по крайней мере 40 % луча не искажено. Видимость вокруг радара можно моделировать, используя цифровую модель ландшафта, однако получаемый результат не идеален вследствие небольших ошибок угла направления луча, неточностей в моделировании его преломления и недостаточного разрешения цифровой модели ландшафта, особенно на небольших расстояниях.

3.7.3.3 Ширина и дальность распространения радиолокационного луча

На расстоянии 160 км ширина радиолуча может достигать нескольких километров в зависимости от параметров применяемого луча. Обычно колебания отражаются бывают значительными в пределах этого большого пространственного объема. Таким образом, получают значение, усредненное для большого пространственного объема, а не единичное значение наблюдаемого элемента в точке. Уравнение радиолокации основано на допущении, что радиолуч заполнен meteorологическими целями. Поэтому нельзя ожидать тесной связи между значениями осадков, полученными по радиолокационным наблюдениям и по измерениям осадкомерами в отдельных точках. Однако пространственное распределение дождя, получаемое с помощью радиолокатора, обычно более точно передает конфигурацию изогиет ливня, чем измерения большинства осадкомерных сетей.

Установлено, что для условий ливневых осадков, частота эхо-сигналов при дальности 160 км составляет всего около четырех процентов от частоты эхо-сигналов при дальности 64 км. Поэтому ливень, заполняющий весь радиолуч на расстоянии 64 км, заполнил бы 1/8 радиолуча на расстоянии 160 км. Это является следствием сочетания факторов ширины радиолуча и его угла дальности.

3.7.3.4 Атмосферное и антенное ослабление сигнала

Микроволны ослабляются в атмосферных газах, облаках и осадках. Ослабление радиоволн является результатом действия двух факторов — поглощения и рассеивания. Обычно газы действуют только как поглотители, а облака и дождевые капли одновременно и рассеивают, и поглощают радиоволны. Для радиолокационных установок, работающих на более длинных волнах, ослабление не является проблемой, и им можно больее частью пренебречь. Ослабление принято выражать в децибелах (дБ) и используется как мера относительной мощности и определяется следующим уравнением:

\[dB = 10 \log_{10} \frac{P_t}{P_r}, \] (3.7)

где \(P_t \) и \(P_r \) — соответственно излучаемая и принимаемая мощность. Величины ослабления сигнала в зависимости от интенсивности дождя и длины волны приведены в таблице I.3.4.

При выполнении радиолокационных наблюдений могут быть введены следующие поправки: поправка, учитывающая расстояние \(R \) от meteorологического радиолокатора до объекта (1/\(R^2 \), \(R \) — диапазон); поправка, отражающая ослабление сигнала атмосферными газами (0,08 дБ∙км\(^{-1}\) в одну сторону) и поправка, отражающая ослабление сигнала при прохождении через зону ливня (таблица I.3.4). Однако подобные процедуры (Meischner, 2003; Collier, 1996) могут быть ненадежными при сильном ослаблении сигнала, и оперативные поправки «запираются» (ограничиваются), т. е. их введение находится на грани целесообразности. Возможно, в будущем появятся измерительные процедуры, основанные на применении многофункциональных meteorологических радиолокаторов (раздел 3.7.8).

| Таблица I.3.4. Ослабление радиолокационного сигнала, вызванное осадками (дБ∙км\(^{-1}\)) |
|-----------------|----------------------------------|-----------------|
| Интенсивность дождя (мм∙ч\(^{-1}\)) | Длина волны (м) |
| 0,1 | 0,057 | 0,032 | 0,009 |
| 1,0 | 0,0003 | 0,002 | 0,007 | 0,22 |
| 5,0 | 0,0015 | 0,015 | 0,061 | 1,1 |
| 10,0 | 0,003 | 0,033 | 0,151 | 2,2 |
| 50,0 | 0,015 | 0,215 | 1,25 | 11,0 |
| 100,0 | 0,015 | 0,481 | 3,08 | 22,0 |

Расстояние (км), на которое должны распространяться осадки данной интенсивности, чтобы вызвать ослабление в 10 дБ при различных длинах волн

<table>
<thead>
<tr>
<th>Таблица</th>
<th>Интенсивность дождя (мм∙ч(^{-1}))</th>
<th>Длина волны (м)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>33 000</td>
<td>4 500</td>
</tr>
<tr>
<td>5,0</td>
<td>6 600</td>
<td>690</td>
</tr>
<tr>
<td>10,0</td>
<td>3 300</td>
<td>310</td>
</tr>
<tr>
<td>50,0</td>
<td>600</td>
<td>47</td>
</tr>
<tr>
<td>100,0</td>
<td>300</td>
<td>21</td>
</tr>
</tbody>
</table>
Глава 3. Измерение количества осадков

3.7.3.5 Преломление и множественное рассеяние радиолокационного луча

Радиолокационные волны проходят через пространство, обладающее эффектом преломления, который обусловливает криволинейность их траектории. Средний радиус их кривизны составляет примерно 4/3 среднего радиуса Земли. Вследствие неравномерного распределения влаги по вертикали может произойти добавочное рефракционное искривление радиолуча. В результате возникает явление, которое часто называют явлением волновода или захвата радиолокационного луча; оно либо вызывает обратное искривление луча в сторону земной поверхности, либо искривляет луч вверх, причем захватываются осадки на расстоянии 80–120 км. Метеорологические условия, способствующие захвату, могут быть выражены математически.

Если радиолокационные сигналы рассеиваются сферическими ледяными частицами, покрытыми водой, то процесс, известный как рассеяние с тремя телами, может привести к обнаружению необычных признаков осадков, например «выбросу града». Этот процесс включает комбинированное рассеяние сигнала поверхностью земли и гидрометеорами, но не является распространенным явлением.

3.7.3.6 Вертикальная скорость

Вертикальная скорость осадков в системах с глубокой конвекцией может обусловить появление радиолокационных эхо-сигналов, что, в свою очередь, может привести к искажению отношения между количеством осадков \(R \) и отражаемостью \(Z \) по сравнению со значением, определенным для спокойного воздуха. Например, при нисходящих движениях воздуха со скоростью 8 м/с значение отражаемости при данной интенсивности осадков может быть приблизительно на 3 дБ меньше, чем в спокойном воздухе, что приводит к занижению интенсивности осадков на 40 процентов.

3.7.3.7 Вертикальный профиль отражаемости

Главный фактор, вызывающий смещение радиолокационных оценок осадков над поверхностью, — это геометрические параметры вертикальных измерений meteorологических радиолокаторов. При увеличении расстояния радиолокационные измерения производятся на возрастающей высоте над земной поверхностью. Следовательно, радиолокационные измерения отражаемости в воздухе могут быть точными, но не могут быть репрезентативными для условий вблизи от поверхности. Это проблема взятия проб, а не ошибка измерений.

Когда радиолокационный луч пересекает уровень, на котором начинает таять снег, отражаемость увеличивается, и такое явление называется «яркая полоса». Это происходит на несколько сотен метров ниже уровня замерзания (см. рисунок I.3.9). На этом рисунке, когда снег находится во всей глубине осадков, яркая полоса не обнаружена и радиолокационная отражаемость уменьшается с увеличением высоты.

Вертикальный профиль отражаемости (ВПО) над каждой точкой земной поверхности обозначается \(Z_e(h) \), где \(h \) — высота над поверхностью на расстоянии \(r \) от местоположения радиолокатора. Форма ВПО определяет величину выборочной разности (Koistinen and others, 2003). Обозначим форму радиолокационного луча через \(f^2 \), получим:

\[
Z_e(h, r) = \int f^2(y) Z_e(h) \, dy .
\]

(3.8)

Интегрирование выполняется по вертикали (\(y \)) от нижней до верхней границы луча. Тогда вертикальная выборочная разность (в децибелах, или дБ) равна:

\[
c = 10 \log \left(\frac{Z_e(0)}{Z_e(h, r)} \right) ,
\]

(3.9)

где \(Z_e(0) \) — это отражаемость на поверхности в ВПО. Следовательно, складывая выборочную разность \(c \) с измеренной отражаемостью в воздухе \(dBZ \), отражаемость на поверхности \(dBZ(0, r) \) равна:

\[
dBZ(0, r) = dBZ + c .
\]

(3.10)

Рисунок I.3.9. Два вертикальных профиля отражаемости, усредненных по одиночному полярному объему на расстоянии 2–40 км от радиолокатора. Сплошной линией обозначен дождь, а пунктирной — снег (Koistinen and others, 2003)
Во время снегопада выборочная разность увеличивается как функция расстояния, указывая на существенное занижение величины осадков над поверхностью даже на малых расстояниях. Однако во время дождя радиолокационные измерения достаточно точно на расстоянии до 130–140 км. В случае если яркая полоса расположена на высоте более 1 км над радиолокационной антенной, завышение измерений скомпенсирует недооценку эффекта присутствия снега в зоне луча метеорологического радиолокатора. Таким образом, радиолокационные измерения являются более точными на больших расстояниях, чем они были бы без яркой полосы.

В некоторых областях мира наблюдается рост орографических осадков из облаков нижнего яруса на склонах, подвергающихся сильным потокам влажного морского воздуха. Этот рост может отражаться в ВПО, но иногда этот процесс протекает ниже высоты радиолокационного луча. В этом случае точность измерений в некоторой степени может определяться путем применения климатологических поправочных коэффициентов. В некоторых синоптических ситуациях, например перед прохождением теплого фронта, может наблюдаться обратный эффект, главный образом в виде испарения на низких уровнях. В этой ситуации применять поправочные коэффициенты сложнее, и может понадобиться высокая точность измерений в ВПО, на это может быть представлено при помощи сетки с минимально возможным размером ячейки. Время, необходимое на выборку и запись всей радиолокационной развертки, составляет от 1 до 4 минут, а количество слоев по высоте — от 8 до 14.

Выбранный способ сканирования зависит от цели использования радиолокационных данных. Могут применяться два типа сканирования: непрерывный и выборочный. При непрерывном сканировании радиолокационный луч быстро пробегает через всю высоту, после чего процедура повторяется. При выборочном сканировании каждая последующая высота луча пропускается при первой последовательности сканирования, а пропущенные высоты исследуются во время второй очереди сканирования, которая следует сразу за первой. Данные, полученные отдельными лучами радиолокаторов, можно совмещать для использования лучших данных в каждом накопителе, основанном на высоте луча, влиянии рельефа и блокировании луча.

3.7.5 Технология сканирования

Для всех коммерческих радиолокаторов была разработана и сейчас является стандартом конструкция электронного радиолокационного цифрового преобразователя, способного отбирать эхо-сигналы в количестве 80 приращений дальности на каждые 1–2° азимута. Эти данные записываются на магнитную ленту или другие магнитные носители для непосредственно компьютерного анализа на месте, для передачи по линиям связи на удаленный компьютер или для сохранения и последующего анализа. Результаты применения подобного способа получения измерений похожи на результаты измерений, выполненных вручную, за исключением того, что количество отдельных данных больше, по крайней мере, на один порядок, чем может быть представлено при помощи сетки с минимально возможным размером ячейки. Время, необходимое на выборку и запись всей радиолокационной развертки, составляет от 1 до 4 минут, а количество слоев по высоте — от 8 до 14.

3.7.6 Краткий обзор соображений в отношении точности

Как было рассмотрено ранее, при получении оценок дождя над поверхностью при помощи метеорологических радиолокаторов неизбежно возникает целый ряд проблем, связанных с неполной компенсацией эффекта присутствия снега в зоне луча. Это приводит к увеличению отражаемости. В то время как поляризационные радиолокаторы способны непосредственно обнаруживать наличие града, радиолокаторы с однократной поляризацией на это не способны, и в таком случае необходимо использовать другие методы (Collier, 1996).

Следовательно, полагая рассеяние Рэлея в граде в Сдиапазоне:

\[Z = 10 \log_{10} \left(561 D_H^{1.6} \right) \text{ dBZ}. \]

(3.12)
ряд трудностей. Особое значение имеет вертикальная изменчивость радиолокационной отражаемости (ВПО, см. также раздел 3.7.3.7).

Виignal и др. (Vignal and others, 2000) рассмотрели три подхода к определению ВПО. Они обнаружили, что схема корректировки, основанная на климатологическом профиле, значительно улучшает точность суточных радиолокационных оценок дождя в пределах 130 км от radiолокационного пункта. Относительное стандартное отклонение (ОСО) уменьшается с 44 % до 31 %. Дальнейшее улучшение достигается путем использования единственного среднего среднечасового значения ВПО (ОСО = 25 %) и локально определенного профиля (ОСО = 23 %). Этот анализ был проведен для осадков, выпадающих из слоистых и конвективных облаков, хотя наибольшее улучшение получено для первых из них.

Хотя в настоящее время признано, что введение поправки ВПО является существенным первым шагом после удаления помех в результате отражения от местных предметов, систематические ошибки смещения могут оставаться. Целесообразность последующей настройки осадкомерного поста (Meischner, 2003) с целью снижения остаточных отклонений остается неопределенной. Однако применение интегрированных по времени данных с осадкомерных постов действительноляет добавиться некоторых улучшений, особенно в гористой местности (Collier, 1996).

Представляется очевидным, что радар с однократной поляризацией может использоваться для измерения количества суточных осадков с точностью близкой к 10 %, при условии, что полученное значение ВПО тщательно уточняется. Такой уровень точности близок к тому, который обеспечивается осадкомером. Однако измерение количества осадков за промежуток времени менее суток более проблематичен — особенно, при использовании С-диапазона и более коротких волн, которым свойственно ослабление радиолокационного сигнала при конвективных осадках, что является серьезной проблемой. Часовые осадки из слоистых облачков над водосбором площадью около 100 км² можно измерить со средней точностью до 20 %, а сильные конвективные — только до 40 %. В настоящее время проблема точных измерений кратковременных осадков заключается в увеличении их точности в два раза, однако до сих пор эта задача не имеет надежного решения.

3.7.7 Доплеровский радар

3.7.7.1 Основные положения

Для мгновенного измерения абсолютной скорости движения дождевых капель и направления их движения необходимо использовать радиолокационную установку с очень точной частотой передающего устройства и с приемной системой, чувствительной к изменению частоты в результате передвижения цели, хотя для meteorологических объектов эти изменения могут быть незначительными. Radiолокаторы подобного типа иногда называют когерентными radiолокаторами, но гораздо чаще Доплеровскими radiолокаторами благодаря тому, что они используют широко известный эффект Доплера. Более подробное описание radiолокаторов этого типа, а также дополнительные ссылки представлены в публикациях Европейской Комиссии (European Commission, 2001) и Мейскнера (Meischner, 2003).

Доплеровские radiолокаторы используются в научных целях уже много лет, как по отдельности, так и в виде сетей (преимущественно в последнее время), обычно состоящих из двух или трех radiолокаторов. Они играют важную роль в исследовании атмосферы, и некоторые специалисты по радиолокационной meteorологии рассматривают их в качестве основного инструмента в изучении динамики воздушных масс, и особенно конвективной облачности. Однако до сих пор существует проблема интерпретации данных, и только в самые последние годы большое внимание было уделено их использованию в оперативных системах. В некоторых регионах мира, особенно с резкими изменениями погоды, они уже задействованы в оперативных системах и считаются наиболее перспективным видом radiолокаторов. Они гораздо более сложны, хотя и не намного дороже, чем традиционные radiолокаторы, однако требуют более высокой мощности на обработку и больших усилий на эксплуатацию. Несмотря на это, в Соединенных Штатах Америки и других странах Доплеровские radiолокаторы составляют значительную часть национальных наблюдательных сетей. Доплеровские radiолокаторы можно применять в обычных прогнозистических целях для получения полезной информации для предупреждения таких явлений, как ураганы и сильные штормы. Кроме того, по сравнению с любыми другими методами они позволяют получать более полную информацию об их интенсивности и структуре.

3.7.7.2 Исключение помех

Большинство систем измеряют интенсивность осадков как общепринятым способом, так и с помощью Доплеровского radiолокатора. Одним из важных преимуществ такой двойной системы является то, что она дает возможность определить с определенной точностью положение и размер постоянных эхо-сигналов (за счет четкости и устойчивости) с помощью канала Doppler. Эта информация затем может использоваться при получении информации об осадках без применения Доплеровского канала. Как и любая другая система
дистанционного зондирования, этот метод не позволяет получать полностью успешные результаты будучи использован сам по себе, поскольку при определенных условиях погоды и прохождения радиосигналов, постоянный эхо-сигнал, по-видимому, может смешаться и, наоборот, иногда осадки фактически стационарны. Исключение помех Доплеровского радиолокатора обычно связано с применением дополнительных процедур исключения помех, например карт помех и ВПО.

Для получения эхо-сигнала от неоднородных отражающих объектов и для измерения интенсивности осадков в наибольшем диапазоне (в сравнении с обычными радиолокаторами) или для изучения структуры сильных ливней необходимо использование более длинных волн, предпочтительно с длиной 10 см.

3.7.7.3 Измерение ветра

Ряд различных технологий оценки ветра был разработан при помощи одного Доплеровского радиолокатора (Bringi and Chandrasekar, 2001; European Commission, 2001; Meischner, 2003). Производители коммерческих радаров сегодня предлагают некоторые из таких технологий, которые можно использовать как для средних профилей горизонтальной скорости ветра, так и радиальных при определенных условиях. Эти данные пока не используются для оперативной оценки осадков, хотя это может измениться в ближайшем будущем, поскольку такие данные ассимилируются в численные модели прогнозирования погоды (ЧПП) (раздел 3.17).

3.7.8 Многофункциональные радиолокаторы

Развитие аппаратного обеспечения многофункциональных радиолокаторов, с помощью которого измеряются свойства гидрометеоров, шло медленно, начиная с производства высокоскоростных переключателей, позволяющих осуществлять поочередную передачу вертикально и горизонтально поляризованного микроволнового излучения. Однако в последние годы стали активно работать над другими видами поляризации, такими как круговая поляризация, а также над изучением возможностей многофункциональных радиолокаторов для измерения осадков, также повысилось внимание к разработке аппаратного обеспечения.

Многофункциональные исследовательские радиолокаторы, такие как объект SCU-CHILL в Соединенных Штатах Америки и Чилболтон в Соединенном Королевстве предоставляют испытательную площадку, при помощи которо можно заключить, какая основа поляризации наиболее эффективна для измерения дождевых осадков, и выбрать тип гидрометеора. Сейчас возможно осуществлять одновременную передачу горизонтального и вертикального излучения без необходимости применения переключателя поляризации высокой мощности. В настоящее время эта форма одновременной передачи реализована в исследовательском радиолокаторе S-диапазона WSR-88D, разработанном в Национальной лаборатории исследования сильных штормов (NSSL), и она считается основой поляриметрической модернизации оперативных радиолокаторов WSR-88D, используемых в Соединенных Штатах Америки.

3.8 НАЗЕМНЫЕ РАДИОЛОКАТОРЫ И МЕТОДЫ МОНИТОРИНГА ОСАДКОВ

Во многих странах уже более 20 лет оперативно используются наземные радиолокаторы, в основном в сочетании с сетями дождемеров, которые часто применяются для их калибровки. Оценки осадков, полученные с помощью метеорологических радиолокаторов, зачастую более полны, чем полученные осадкомером, потому что они непрерывны во времени и пространстве и отражают площадь охвата (D’Souza and others, 1990). Тем не менее с их использованием связаны такие проблемы, как обратное рассеяние, ослабление, поглощение сигнала и помехи при его передаче, которые особенно проявляются в районах с переменным рельефом и сложными условиями калибровки сигнала. Несмотря на то что сеть метеорологических радиолокаторов, управляемая в странах Европы и Северной Америки национальными метеорологическими службами, в достаточной степени обеспечивает их информацией для ежедневного оповещения и прогнозирования, потребность в количественных оценках осадков, необходимых для использования в области гидрологии и водных ресурсов, особенно для прогнозирования паводков, не удовлетворяется в полной мере. Радиолокаторы широко используются как неофициальные средства первоначального предупреждения о приближающемся паводке, использующие двигающиеся изображения, полученные с помощью штормовой системы. Однако не так широко используются количественные данные, полученные радиолокатором и содержащие ограничения по точности, особенно в горных районах и в моменты времени, когда возникает эффект яркой полосы (BMO, 1998). Хотя неформально радиолокаторы широко используются как средство предупреждения о паводках, только в двух или трех странах полученные таким образом количественные данные являются элементами системы прогнозирования стока. Даже в этом случае радиолокатор выступает в качестве источника дополнительной информации к основным данным, полученным сетью осадкомеров. Разработка
Глава 3. Измерение количества осадков

3.9 Сети оперативных радиолокаторов

В настоящее время сети оперативных радиолокаторов существуют во многих странах. В Соединенных Штатах Америки используются S-диапазонные Доплеровские радиолокаторы, а в Европе большинство сетей состоит из систем C-диапазона. На рисунке 3.10 показан пример изображения, полученного с радиолокационной сети в Соединенном Королевстве. Границы между отдельными радиолокаторами определяются на основании высоты радиолокационных лучей, наличия отражения от земной поверхности, районов, где требуется наибольшая точность и т. д. Трудно переоценить важность регулярного обслуживания и калибровки радиолокаторов, несмотря на то что радиолокаторы сейчас стали очень надежными, время отключения в некоторых странах составляет всего несколько процентов в месяцы и, в отличие от них, совпадает с периодами осадков.

3.10 Измерение дождевых осадков методом затухания микроволн двойной частоты

Как было показано ранее (Holt and others, 2000), хорошие оценки осредненного вдоль пути прохождения радиолокационного сигнала количества дождевых осадков можно получить из разности ослабления сигналов двух различных частот. Удельное затухание K (дБ·км$^{-1}$) оценивается в соответствии с уравнением:

$$K = c R^d,$$ (3.13)

Это отношение сильно зависит от частоты сигнала и неизвестных параметров c и d, зависящих от температуры, формы дождевых капель и распределения размеров дождевых капель. Однако если используются двухчастотная взаимосвязь, то можно выбирать две частоты и два состояния поляризации, для которых разница в величинах удельного ослабления сигнала будет сравнительно незначительной по отношению к этим неизвестным параметрам. После того как приближенные измерения ослабления сигнала были сопоставлены с характеристиками газового поглощения, можно использовать линейные зависимости между этим параметром и интенсивностью дождевых осадков. Пример эффективности этой методики в измерении контура суммарных дождевых осадков показан на рисунке 1.3.11.
Определение связи между ослаблением сигнала на двух микроволновых частотах вдоль радиальной линии от метеорологического радиолокатора дает возможность измерить суммарные объемы дождевых осадков, которые можно сравнить с данными, полученными от радара. Если радар работает в режиме затухающей частоты, то это сравнение позволяет воспользоваться методом измерения ослабления сигнала при прохождении через дождевые осадки, или от осадков на антенну метеорологического радиолокатора, но лишь в одном направлении по азимуту. В настоящее время эта методика оперативно не используется.

3.11 НАБЛЮДЕНИЕ ЗА ДОЖДЕВЫМИ ОСАДКАМИ С ПОМОЩЬЮ СПУТНИКА

3.11.1 Основные положения

Оценка дождевых осадков из космоса основана на измерении величины излучения, которое отражается и пропускается через верхнюю границу облаков. Большая часть этого излучения не проникает глубоко в толщу облака, содержащую частицы с размерами сравнимыми или большими, чем длина волны излучения. По этой причине, за исключением диапазонов с наиболее длинной волны, большая часть излучения поступает из верхней части дождевых облаков и вследствие этого может быть направленно связана с осадками на поверхности земли. Следовательно, существует множество методов, в которых используется целый ряд процедур.

3.11.2 Видимый и инфракрасный диапазоны

Интенсивность дожда изменяется в зависимости от степени расширения холодных (T < 235°K) областей вершин облаков. Предполагается, что расширение верхних границ облаков является показателем дивергенции на высоте, а следовательно, и скорости движения воздушных масс и осадков. Как бы то ни было, когда метод используется на больших территориях, он не дает каких-либо значительных преимуществ по сравнению с простейшим возможным методом, который предполагает, что все облака с вершинами, более холодными, чем известная пороговая температура T выдают осадки с нормой осадков G мм·ч⁻¹, где T = 235°K и G = 3 мм·ч⁻¹, что типично для восточного побережья Атлантического океана в экваториальной зоне. Этот способ был разработан с целью получения глобального индекса осадков (ПИО), который очень широко используется.

Такие пространственные методы работают хорошо только для пространственно-временной зоны, которая является достаточно большой и включае значительное количество дождей, которые дают хорошее представление полного развития конвективных систем дождевых облаков (например, 2,5° x 2,5° x 12 часов). Классификация облаков на конвективные и слоистые в зависимости от температурной текстуры вершины облака показала некоторые преимущества для обнаружения тропических ливней над сушею. Однако данный метод не работает (наряду с остальными методами, основанными на использовании инфракрасного диапазона) в средних широтах в зимний период, поскольку в этом случае «конвективное» соотношение между холодной областью вершины облака и поверхностными дождевыми осадками не может быть применено к большей части облачных систем, которые являются неконвективными.

Метод использования длин волн в видимом диапазоне для оценки степени конвекции эффективен тогда, когда используются также инфракрасные длины волн, которые указывают высоту облака. Однако такие методы могут вводить в заблуждение при наличии ярких перистых облачных масс, или при присутствии небольших орографических дождей из облаков нижнего яруса.

Окно прозрачности атмосферы приближительно в 10 мкм разбивается на два близко расположенных диапазона с центрами 10,8 и 12 мкм. Облака облачные области, которые указывают высоту облака. Однако такие методы могут вводить в заблуждение при наличии ярких перистых облачных масс, или при присутствии небольших орографических дождей из облаков нижнего яруса.

Окно прозрачности атмосферы приближительно в 10 мкм разбивается на два близко расположенных диапазона с центрами 10,8 и 12 мкм. Облака облачные области, которые указывают высоту облака. Однако такие методы могут вводить в заблуждение при наличии ярких перистых облачных масс, или при присутствии небольших орографических дождей из облаков нижнего яруса.
создавая разность яркостной температуры между этими двумя каналами. Было показано, что перистые облака можно отличить от более толстого облака при наличии большой разности яркостной температуры. Это помогает не рассматривать тонкие облака как дождевые.

Очень холодная температура верхней границы облака не всегда является признаком наличия осадков, при котором появляется инфракрасная методика не применима. Процессы формирования осадков требуют наличия крупных капель и/или ледяных частиц в облаке, которые часто распространяются до верхней границы облака. Эти большие частицы поглощают излучение с длиной волны 1,6 и 3,7 мкм намного сильнее, чем мелкие капли облака. Этот эффект позволяет вычислить эффективный радиус (r_{eff} = суммарный объем, разделенный на суммарную площадь поверхности) частиц. Было показано, что эффективный радиус $r_{eff} = 14$ мкм может использоваться для распознавания дождевых облаков независимо от температуры их верхней границы (рисунок I.3.12).

3.11.3 Пассивные микроволновые методы

Излучение в микроволновом диапазоне обеспечивает измерения, которые в физическом смысле лучше всего связаны с фактическим количеством осадков, особенно в самых длинных диапазонах волн. Взаимодействия пассивной микроволновой с дождевыми облаками и поверхностью проиллюстрированы на рисунке 1.3.13 с использованием волн двух диапазонов — более короткого (85 ГГц) и более длинного (19 ГГц). Методы измерений основаны на двух физических принципах поглощения и рассеяния.

Измерения, основанные на поглощении

Капли воды имеют относительно большой коэффициент поглощения/эмиссии, увеличивающийся при более высоких частотах. Эмиссия пропорциональна вертикально интегрированной облачной и дождевой воды в низких частотах, но из-за увеличения излучательной способности при более высоких частотах, эмиссия достигает своего предела даже при небольшой интенсивности осадков.

Измерения, основанные на рассеянии

Ледяные частицы обладают относительно маленьким поглощением/эмиссиеи, но они являются хорошими рассеивателями микроволнового излучения, особенно на более высоких частотах. Поэтому на высоких частотах (85 ГГц) большее рассеяние от льда в верхних частях облаков делает лед эффективным изолятором, поскольку он отражает назад большую часть излучения, испускаемой от поверхности и от дождя. Оставшееся излучение, которое достигает микроволнового датчика, рассматривается как более холодная яркостная температура. Главным источником неопределенности восстановленных величин по данным рассеяния является отсутствие устойчивой зависимости между замороженными гидрометеорами в воздухе и осадками, достигающими поверхности земли.

Два описанных выше физических принципа поглощения и рассеяния использовались для разработки большого количества методов оценки параметров дождя. В целом оценки, полученные на основе пассивных микроволновых методов, имели приемлемую точность для акваторий океана. Однако для тихоокеанской экваториальной зоны пассивные микроволновые методы не дают значительных результатов по сравнению с самым простейшим инфракрасным методом (ГИО).

Над сушей пассивные микроволновые методы позволяют обнаружить дождь, главным образом, с помощью механизма рассеяния частицами льда, но такой косвенный метод оценки характеризует дождь менее точен. Кроме того, дождь, выпадающий на землю из облаков, не содержащих существенного количества льда в верхних слоях, остается, в основном, необнаруженным.
3.11.4 Активные микроволновые методы (радиолокатор для определения параметров дождя; Проект по измерению осадков в тропиках)

Основной лимитирующий фактор точности пассивных микроволновых методов — это большая зона наблюдения, которая вызывает частичное заполнение луча, особенно на более высоких частотах. Разрешающая способность значительно увеличилась с появлением спутников, которые обеспечивают более точные измерения. Спутник ТРММ, установленный на волне 2,2 см, измерял активные микроволновые радиометры (19–90 ГГц) (рисунок 1.3.14). Разрешающая способность приборов составляет около 1 км для видимого и инфракрасного радиометров, приближительно 10 км для микроволновых радиометров и 250 м для радиолокаторов. Применение микроволновых радиометров обеспечивает точность оценок дождя на минимум 10 км, что позволяет получить более точные измерения.

Совмещение измерений, выполненных со спутников типа ТРММ и геостационарных спутников, обеспечивает лучший потенциал для получения точных глобальных оценок осадков из космоса. В настоящее время

Рисунок I.3.13. Взаимодействие пассивных микроволн с высокой (например, 85 ГГц) и низкой (например, 19 ГГц) частотой с облаками осадков и поверхностью. Ширина столбцов показывает, насколько высока температура восходящей радиации. Проиллюстрированные характеристики и их разграничения: a) низкая излучательная способность поверхности моря для низких и высоких частот; b) высокая излучательная способность поверхности сушки для низких и высоких частот; c) излучение, исходящее от облаков и капель дождя, которое увеличивается с интегрированной по вертикали жидкой водой для низких частот и быстро поглощается при высокочастотных волнах; d) сигнал излучательной способности воды на низких частотах поглощается на высоких частотах; e) поглощенное высокочастотное излучение от дождя не сильно отличается от основы поверхности земли; f) частицы осадков в виде льда рассеиваются в противоположном высокочастотному излучению направлении; g) поглощение низкочастотного излучения не имеет значительного влияния; h) поглощение высокочастотного излучения от дождя не сильно отличается от основы поверхности земли; i) лед позволяет низкочастотному излучению беспрепятственно подниматься вверх, его можно обнаружить над вершиной облака как область с высокой яркостной температурой.

(Rosenfeld and Collier, 1999)
Глава 3. Измерение количества осадков

3.11.5 Краткий обзор соображений в отношении точности

В тропических регионах дождевые осадки могут иметь существенный суточный цикл, при этом фаза и интенсивность цикла могут варьироваться от региона к региону. Орбита низкого наклонения, используемая для ТРММ, обеспечивает съемку полного суточного цикла во время пересечения экватора в течение месяца. Дело обстоит иначе для спутников, находящихся на полярной орбите, для которых время пересечения экватора всегда одно и то же. Поэтому наличие суточного цикла может увеличить погрешность зондирования.

Для ежемесячных средних значений на площади 280 км² и интервала зондирования 10 часов, характерных для спутника ТРММ, ошибка зондирования составляет приблизительно 10 %. Однако для конвективных систем в других регионах, обладающих более коротким временем декорреляции, чем в зоне тропических дождей, эта ошибка, вероятно, будет еще больше.

Валидация спутниковых алгоритмов, предназначенных для оценки скоплений дождевых осадков, сложна и должна быть выполнена способами, гарантирующими, что различные методы позволяют получить данные с одинаковыми характеристиками, такими как время осреднения и территория покрытия.

Наивысшая точность для измерения пространственного распределения дождевых осадков из космоса в настоящее время достигнута над тропическими океанами, где использование ГИО настолько же эффективно, как и пассивные микроволновые методы измерения дождевых осадков для больших периодов осреднения (порядка нескольких месяцев). Однако ошибки для отдельных событий могут быть значительными, поскольку «теплый дождь» из мелких облаков является обычным явлением в некоторых местах в тропиках. Пассивные микроволновые методы становятся все более эффективными по мере продвижения к высоким широтам, где конвективные дождевые осадки выпадают менее часто. Здесь наивысшая точность достигается посредством комбинирования пассивных микроволновых и инфракрасных методов зондирования и данных наблюдений с геостационарных спутников. Несколько более низкая точность инфракрасных методов наблюдается при съемках конвективного дождя над земной поверхностью из-за большого динамического и микрофизического разнообразия систем дождевого облака. Это вызывает большую изменчивость в соотношениях между осадками и свойствами верхних частей облаков. Эффективность пассивных микроволновых методов также уменьшается над сушей, поскольку ее излучательная способность значительно уменьшает эффективность использования частот

Рисунок I.3.14. Снимок ливневых осадков в Техасе, полученный с помощью микроволнового формирователя изображения и радиолокатора для обнаружения осадков, установленного на Спутнике для измерения количества осадков в тропических зонах (ТРММ), 1 мая 2004 г., в 04 ч 39 мин МСВ.
(Рисунок любезно предоставлен НАСА)
ниже 35 ГГц. Тем не менее результаты зондирования над сушей на частоте 88,5 ГГц являются обнадеживающими.

3.12 ДИСТАНЦИОННЫЕ МЕТОДЫ ИЗМЕРЕНИЯ СНЕГА

Дистанционные методы зондирования снега могут быть основаны на применении гамма-лучей, излучения в видимом диапазоне, ближнем инфракрасном, тепловом инфракрасном и микроволновом диапазонах. Краткий обзор относительных откликов группы датчиков на различные свойства снежного покрова показывает, что микроволновой диапазон обладает самым большим потенциалом, затем идут видимый и ближний инфракрасный диапазоны. Использование гамма-лучей в большей степени ограничено тем, что сбор информации должен быть выполнен на самолете на небольшой высоте полета, и в меньшей степени тем, что гамма-лучи чувствительны к определённому водному эквиваленту снега. Возможности теплового инфракрасного излучения также ограничены, но оно может использоваться из космоса в ночные условия (Rango, 1993; ВМО, 1999). К настоящему времени разработаны разные подходы к определению областей, покрытых снегом, водного эквивалента снежного покрова и его свойств. В большой степени они развивались благодаря наличию данных от существующих спутников или полученных в ходе программ по сбору данных с воздушного и автомобильного транспорта. Данные дистанционного зондирования в настоящее время используются оперативно при оценке протяженности снежного покрова, водного эквивалента, а также в прогнозах сезонного снеготаяния. Потенциал спутников по предоставлению полезной информации о динамике снежного покрова теперь широко признан. В настоящее время существует большое количество методик, которые основаны на использовании полученных со спутника измерений снежного покрова, необходимых для прогнозирования талого стока (Lucas and Harrison, 1990).

Еще более важной характеристикой, чем протяженность и местоположение снежного покрова для протекающих в нём различных процессов, является высота снежного покрова. Это вертикальное измерение по существу содержит информацию, необходимую для оценки объема снега, который непосредственно связан с потенциалом талого стока.

Хотя авиационная гамма-спектрометрия — это очень точный метод дистанционного зондирования, применяемый для измерения водного эквивалента снега, ранее упомянутые недостатки этого метода ограничивают его использование. Вместе с тем авиационные данные, полученные при помощи гамма-съемки и данные метеорологического спутника совместно обеспечивают хорошие возможности для оперативного картирования снежного покрова (Kuitinen, 1989; Carroll, 1990).

Поскольку разрешение пассивных микроволновых датчиков со временем улучшается (российский микроволновый радиометр, работающий на длине волны около 0,8 см с приблизительно 8-километровым разрешением был запущен в 1996 г.), возможность их применения в любых погодных условиях будет использоваться все больше и больше. Наконец, последнее преимущество микроволнового спектра состоит в том, что ночные наблюдения легко выполняются благодаря стабильности испускаемого микроволнового излучения в отличие от отраженного видимого микроволнового излучения. Излучательная способность и обратное рассеяние микроволнового излучения зависят от почти всех параметров снега, что усложняет измерение наиболее необходимых параметров: водного эквивалента, протяженности снежного покрова и количества свободной воды.

Были установлены хорошие зависимости между высотой снежного покрова и микроволновой эмиссией и обратным рассеянием для сухих однородных с небольшими признаками слоистости снежных покровов. Такие зависимости не столь явно выражены, если снежный покров был подвергнут оттаиванию и повторному замерзанию, в то время как наличие незамерзшей воды где-либо в снежном покрове приводит к заметным изменениям в микроволновом отклике. В целом, для этого типа измерений использование микроволновой радиометрии представляется более надежным, чем использование радиолокатора (Blyth, 1993).

Данные, полученные с применением нового устройства для получения изображений с помощью специального микроволнового датчика (ССМ/И), используются для оперативного построения карт водного эквивалента снега в канадских прериях и в настоящее время оперативно предоставляются канадским пользователям (Goodison and Walker, 1993).
Активный микроволновый диапазон обладает потенциалом, сравнимым с потенциалом пассивного микроволнового диапазона. Однако нужно отметить, что активные микроволновые наблюдения за снежным покровом не только очень редки и практически не существуют, но и анализ активных микроволновых данных намного сложнее анализа пассивных микроволновых данных из-за неопределенности, возникающей вследствие воздействия поверхностных характеристик (включая почвы) и геометрических свойств отраженной волны радиолокатора. Более высокое разрешение (10 м из космоса) активной микроволновой радиации является значительным преимуществом перед методикой, основанной на применении пассивной микроволновой радиации. Главная проблема заключается в том, что спутниковый радар с синтезированной апертурой (РСА) может обеспечить эти данные с высокой разрешающей способностью, используя имеющихся в настоящее время одночастотных систем, таких как ERS-1, для определения талого и влажного снега, вероятно, будет ограничено. Некоторые из описанных проблем могут быть решены путем использования многочастотных измерений, основанных на мультиплексной поляризации РСА.

Некоторые из наиболее перспективных исследований методов дистанционного зондирования снегопадов включены в список ссылок в конце этой главы.

3.13 Спутниковое дистанционное зондирование снежного покрова

Данные методов дистанционного зондирования в настоящее время оперативно используются для определения снежного покрова и водного эквивалента снега, а также при прогнозировании сезонного талого стока. Возможности спутников по получению полезной информации о динамике снежного покрова теперь широко признаны, и сегодня существует множество методик, которые используют полученные со спутника измерения снега для прогнозирования объема талого стока.

Только спутники могут обеспечивать систематический мониторинг сезонного снежного покрова, делая это эффективно и в достаточно крупных масштабах. Ценные данные дистанционного зондирования, необходимые для оперативного картирования снежного покрова, могут быть получены с таких спутников, как экспериментальный спутник для наблюдений за Землей (СПОТ), Ландсат, спутник Национального управления по исследованию океанов и атмосферы (НУОА), геостационарный оперативный спутник по исследованиям окружающей среды (ГОЕС), спутники наблюдения за Землей (ЕОС) и метеорологические спутники Министерства обороны США (ДМСР). Выбор спутника для картирования снега зависит от минимальных размеров области, которую необходимо исследовать. Поскольку точность оценки протяженности снежного покрова и зон его распространения зависит от пространственного разрешения используемых датчиков, в оперативных схемах картирования снега для маленьких областей редко возникает необходимость (Lucas and Harrison, 1990). В результате датчик тематического картографа (ТМ) спутника Ландсат обычно применяется в научно-исследовательских работах и, в некоторых случаях, использованию этого датчика следует предпочесть аэрофотосъемку, поскольку в этом случае снимки могут быть сделаны в течение выбранных безоблачных дней и для схожих по размерам областей.

Протяженность снежного покрова во многих странах оперативно картрируется по данным, полученными с метеорологического спутника. Хотя снежный покров может быть обнаружен и проверен при помощи различных устройств дистанционного зондирования, самое большое применение было найдено в видимом и ближнем инфракрасном диапазонах электромагнитного спектра. Принцип состоит в том, что коэффициент отражения снега в видимом и ближнем инфракрасном диапазоне электромагнитного спектра намного больше, чем любого другого естественного материала на земле, и, таким образом, снег может быть легко обнаружен и, следовательно, установлено протяженность снежного покрова. Отражательная способность (альбедо) зависит от таких свойств снега, как размер зерна и форма, содержание воды, поверхностная шероховатость, глубина и присутствие примесей. В частности, видимый красный диапазон (0,6–0,7 м) мноогоспектрального устройства сканирования (МСС) на спутнике Ландсат широко используют для картирования областей, покрытых снегом, из-за их сильного контраста с областями без снега. Нужно отметить, что хотя спутники Ландсат и СПОТ могут обеспечить адекватное пространственное разрешение для картирования снега, их недостаточная частота покрытия ограничивает их возможности в этой области. В результате многие потребители вернулись к использованию данных наблюдений с полярно-орбитальных спутников НУОА, оборудованных усовершенствованным радиометром очень высокого разрешения (УРОВР). Несмотря на то что они отличаются гораздо более высокой частотой покрытия (каждые 12 часов в противоположность каждые 16–18 дней), проблема с данными НУОА–УРОВР состоит в том, что разрешение 1 км
(в видимом красном диапазоне от 0,58 до 0,68 м) может быть недостаточным для картирования снега на небольших водных бассейнах.

Существующие спутники ЕОС (АМ и РМ) оснащены спектrorадиометром для получения изображений со средним разрешением (МОДИС) — оборудованием, которое позволяет ежедневно получать данные с довольно высоким пространственным разрешением. Программа ЕОС также предусматривает использование ряда довольно надежных алгоритмов получения оценок снежного покрова. Несмотря на проблемы пространственного и временного разрешения, связанные с аэрофотосъемкой и спутниковыми изображениями, они оказались очень полезны для мониторинга нарастания снежного покрова и исчезновения заснеженных областей весной. Данные со спутника Метеор (который использовался для идентификации границ наличия/отсутствия снега в бассейнах рек и других территорий в бывшем Союзе Советских Социалистических Республик) и спутника НУОА были объединены, чтобы картировать область снежного покрова в бассейнах в пределах от 530 до 12 000 км² (Щеглова и Чемов, 1982). Хотя снег может быть обнаружен и в ближнем инфракрасном диапазоне, контраст между снегом и областью без снега значительно ниже, чем в видимой области электромагнитного спектра. Однако контраст между облаками и снегом больше в 5-ом диапазоне тематического картографа спутника Ландсат (1,57–1,78 м). Таким образом, ближний инфракрасный диапазон в тех случаях, когда им можно воспользоваться, служит полезным средством распознавания облаков и снега. Различие между изображениями, полученными в видимом и ближнем инфракрасном диапазонах спутника НУОА-9 использовались в Соединенном Королевстве для того, чтобы определить местонахождение областей полного или частичного снежного покрова и выявить зоны таяния и накопления снега. Были выпущены ежедневные карты областей, покрытых снегом, которые затем были сопоставлены с целью получения ежедневных карт протяженности снежного покрова в настоящее время производятся с использованием геофизических алгоритмов на основе данных, полученных со спутников микроволновых радиометров, таких как устройства для получения изображений с помощью специального микроволнового датчика, ССМ/И (DMSP). Эти карты наиболее надежны для больших равнинных областей с небольшой или низкой растительностью при сухом снеге. Проблема разрешения потенциально может быть решена с использованием активных микроволновых датчиков с высокой разрешающей способностью. К сожалению, в настоящее время известно об очень немногих, если таковые вообще имеются, экспериментах с использованием коротких микроволн с длиной около 1 см, которые чувствительны к осадкам в виде снега.

3.14 ОПЕРАТИВНЫЕ СПУТНИКИ

Методы дистанционного зондирования из космоса обеспечивают возможность наблюдения за осадками и снежным покровом на обширных территориях в масштабе реального времени или в масштабе времени, близком к реальному и, таким образом, служат дополнением к обычным более точным измерениям, сделанным в точке на земной поверхности или полученными при помощи метеорологического радиолокатора. Полезные данные могут быть получены со спутников, используемых, прежде всего, в метеорологических целях, включая полярно-орбитальные спутники НУОА и DMSP, а также геостационарный GOES, геостационарный meteorологический спутник (TMC) и МЕТЕОСАТ (Engman and Gurney, 1991).
На оперативных полярно-орбитальных спутниках также установлены зондировщики, такие как прибор ТАИРОС-Н для оперативного вертикального зондирования (ТОВС) и совершенствованный микроволновый радиометр (AMСУ), которые обеспечивают получение данных для многочисленных моделей прогнозирования погоды, используемых для прогнозирования дождевых осадков. Спутики серии НУОА, несущие перечисленное оборудование, были заменены спутниками МЕТОР Европейской организации по эксплуатации метеорологических спутников (ЕВМЕТСАТ). В то время как пассивные микроволновые радиометры до сих пор находятся в оперативном использовании, повторяя успехи спутника ТРММ, уже существуют реальные планы запуска ряда спутников с аппаратурой для зондирования в видимом, инфракрасном диапазонах, а также с пассивно-микроволновой и активно-микроволновой аппаратурой (Полярная система ЕВМЕТСАТ).

Принимая во внимание тот факт, что спутники ЕРС-1 и ЕРС-2 позволяли получать квазиоперативные спутниковые данные, они были заменены на ЭНВИСАТ ЕВМЕТСАТ, который находился в эксплуатации и обеспечивает пользователей информацией, полученной при помощи различных датчиков, включая РСА. Этот спутник дополнен японской Усовершенствованной системой наблюдений за Землей АДЕОС. Спутник Метеосат второго поколения (МСГ) также находится в эксплуатации и имеет высокую пространственную и временную разрешающую способность (для изображений в видимом и инфракрасном диапазонах). Многоспектральные данные также могут быть получены со спутников Ландсат, СПОТ и, в последнее время, с МОДИС.

Приложение на русском языке

Роса

Несмотря на то что образование росы представляет собой в основном ночные явление и не может служить заметным источником влажности, поскольку ее количество относительно невелико и зависит от местности, оно имеет немаловажное значение в засушливых зонах, где количество росы может быть приравнено к дождю. Поэтому процесс образования росы в значительной степени зависит от источников влаги, следует отличать росу, образующуюся в результате конденсации атмосферного водяного пара на поверхностях с более низкой температурой (это явление известно как «выпадение росы»), и росу, которая образуется в результате испаренной влаги из почвы и растений, а также конденсирующуюся на охлажденных поверхностях (так называемая «дистилированная роса»). Обычно оба этих источника одновременно участвуют в образовании росы, хотя временами они действуют раздельно.

Другим источником влаги является туман или облачные капелли, которые собираются на листах и ветвях и падают на землю в виде капель или стекают непрерывной струей. До последнего времени существовала заметная тенденция переоценивать среднее количество росы, выпавшей на определенной площади. Основная причина заключалась в том, что не учитывались физические пределы возможного образования росы. Изучение уравнения теплового баланса указывает на малую вероятность того, что скрытая теплота образования росы (выпадавшей и/или дистилированной) превысили радиационный баланс; в действительности, скрытая теплота должна быть меньше радиационного баланса, если принять во внимание пригон тепла от почвы и за счет турбулентного обмена.

Существует определенный предел образования росы на данной площади при благоприятных условиях, равный в среднем примерно 1,1 мм·ч⁻¹. Впрочем, образование росы может существенно усилиться в тех местах, где распределение средних температур в горизонтальном направлении неравномерно, и где существует мелкомасштабная адvection от относительно более теплых и влажных областей в более холодные. Кроме того, одномерная форма расчетов потока энергии должна быть модифицирована в случае применения ее к изолированным растениям, так как в этом случае структура радиационного потока и потока влаги существенно отличается по сравнению с одночным источником. Это не означает, что данный фактор влияет на среднюю интенсивность образования росы на обширных горизонтальных площадях, но означает только, что некоторые части этих площадей выигрывают за счет других.

По многим причинам фактическая интенсивность образования росы обычно значительно ниже ее верхнего предела.

Было сделано много попыток разработать прибор для измерения увлажненности листа, имеющего искусственное покрытие, в надежде получить данные для сопоставления с естественными условиями, но они оказались не слишком успешными. Сведения о приборах, предназначенных для измерения продолжительности увлажнения листа, и оценка того, насколько показания различных приборов репрезентативны по отношению к увлажнению поверхности растений, опубликованы в приложении к публикации The Influence of Weather Conditions on the Occurrence of Apple Scab (Влияние метеорологических условий на распространение парши у яблонь) (WMO-No. 140).

Любые из этих приборов могут быть использованы только для получения качественных оценок в определенной ситуации или в качестве грубых средств для региональных сопоставлений. В каждом случае необходима тщательная интерпретация. Если собирать поверхность не находится более или менее
на одном уровне с природной и не обладает анало-
гичными свойствами, прибор не покажет истинное
количество росы, осаждающейся на естественную
поверхность.

Теоретически, среднее количество росы, выпадающей
в каком-то районе, можно определить при помощи
метода теплового потока, но этот метод очень трудно
применить из-за отсутствия сведений о кoeffици-
ентах переноса при строго установившемся режиме.
Единственным надежным методом измерения сум-
марного количества росы является тот, в котором
используется чувствительный лизиметр. Однако при
измерении лизиметром не учитывается дистиллиро-
ванная роса, поскольку она не влияет на общий вес.

Единственным общепринятым средством измере-
ния общего количества росы является использование
промокательной бумаги, то есть взвешивание
листков фильтрующей бумаги до того и после того,
как их плотно прикладывают к поверхности, кото-
рому исследуют. Краткий обзор методов измерения
росы приводится в Руководстве по метеорологичес-
ким инструментам и методам наблюдений (ВМО-№ 8).

3.16 ВЗЯТИЕ ПРОБ ОСАДКОВ ДЛЯ
ОПРЕДЕЛЕНИЯ ИХ КАЧЕСТВА

В последние годы стало очевидным, что загрязнение
атмосферы превратилось в экологическую проблему
огромной важности. Наиболее серьезное влияние кис-
лотных осадков оказывают на районы Соединенного
Королевства, Скандинавии, востока Канады и северо-
востока Соединенных Штатов Америки. Для полной
картины атмосферного переноса токсичных веществ
необходимо проводить отбор и анализ проб жидких и
твердых осадков, а также самого воздуха. В данном
разделе рассматриваются необходимые критерии
отбора проб жидких и твердых осадков и поверхност-
ных осадений. Было установлено, что для анализа
атмосферных осадений за продолжительные пери-
оды в десятки и сотни лет полезно проводить отбор
проб и изучение некоторых других компонентов,
например природных мхов и лишайников, которые
впитывают некоторые металлы, а также кернов льда
из ледников и донные отложения. Дальнейшее рас-
смотрение взятия проб осадков для определения их
качества приведено в пункте 7.2.3.

3.16.1 Коллекторы для взятия
проб дождя и снега [ГОСМ С53]

Для отбора проб осадков применяются различные
типы коллекторов, начиная от контейнеров, сделан-
ных из пластмассы или из нержавеющей стали, и
стеклянных сосудов, которые устанавливаются на
местности перед началом выпадения осадков, и до
специально сконструированных устройств, предна-
значенных для автоматического взятия проб осадков
за определенные интервалы времени.

Двухведерный коллектор является наиболее распро-
страненным устройством, которое позволяет прово-
дить отбор проб жидких и твердых осадков отдельно.
Одно ведро используется для жидких осадков, а дру-
гое для твердых. Этот коллектор снабжен автомати-
ческой системой защиты. В начале выпадения дождя
крышка с ведра для жидких осадков передвигается на
ведро для твердых, а при их прекращении она автома-
тически возвращается на место и закрывается ведро для
жидких осадков. В качестве пробоотборника осадков
чаще применяется черный полиэтиленовый сосуд,
составленный из двух частей. В верхней части он имеет
специально изготовленный съемный обод, который
обеспечивает строго определенную и постоянную
площадь отборника; другая часть состоит из самого
ведра. Каждый раз после удаления пробы отборник
должен промываться дистиллированной и ионизи-
рованной водой. При отборе проб осадков на орга-
нические загрязнители должны применяться пробо-
отборники из нержавеющей стали или стекла.

При необходимости получения информации о за-
грязняющих осадках, приносимых с разных направ-
лений, возможно сочетание использования метео-
рологических приборов. Разработано специальное
устройство, которое распределяет с помощью флю-
гера выпадающие осадки в разные емкости в зависи-
мости от направления ветра.

Современные пробоотборники осадков в виде снега
подогреваются для растопления и сохранения со-
бранных снега в жидком состоянии в нижней части
коллектора, а в остальной его устройство аналогично
dождевым пробоотборникам (ГОСМ С53).

3.16.2 Сбор сухих осадений

Многие из проблем, которые возникают при отборе
снега, также относятся и к отбору проб твердых осад-
ков. Разные мнения существуют в отношении надеж-
ности количественных измерений двухведерным
коллектором. Турбулентность воздуха вокруг таких
устройств имеет иной характер, например по срав-
нению с турбулентностью над поверхностью озер.
Вследствие этого отобранные пробы существенно от-
личаются по абсолютным величинам и по количеству
собранных осадков разных размеров. Поэтому были
предложены другие методы отбора проб твердых осад-
ков, например использование стеклянных тарелок,
покрытых липким материалом или неглубоких емко-
стей с этиленгликолем или с неорганическим маслом.
3.17 УСВОЕНИЕ ДАННЫХ О КОЛИЧЕСТВЕ ОСАДКОВ В ГИДРОЛОГИЧЕСКИХ И ГИДРАВЛИЧЕСКИХ МОДЕЛЯХ: ОБЪЕДИНЕНИЕ И ОЦЕНКА ДАННЫХ ИЗ РАЗЛИЧНЫХ ИСТОЧНИКОВ

В настоящее время ведется активная работа по использованию данных измерений радиолокационной отражаемости и количества дождевых осадков над поверхностью в численных моделях прогноза погоды. Однако существует определенное количество характерных трудностей, к которым можно отнести тот факт, что особенности погоды рассчитываются в моделях в масштабе, большем, чем масштаб данных наблюдений, и, кроме того, радиолокационная отражаемость не может быть напрямую использована при тестировании моделей. Работа по использованию радиолокационных данных в качестве косвенного показателя информации о влажности имела определенный успех (Meischner, 2003), однако проблема всё еще далека от решения. Вероятно, потребуются современные методы трех- и четырехмерной вариационной асимметрии (3D-VAR, 4D-VAR).

Ввод данных о количестве осадков в гидрологические модели также представляет определенную трудность. Важную роль играет контроль качества исходных данных, полученных с помощью радиолокатора или спутника. Для этого необходимо использовать усовершенствованные статистические методы, которые обеспечивают взаимосвязь ошибок входных данных с выходными параметрами модели. Гидрограф, полученный с такими исходными данными не должен использоваться без учета имеющейся неопределенности.

3.18 ГЛОБАЛЬНЫЙ ПРОЕКТ ПО КЛИМАТОЛОГИИ ОСАДКОВ

Глобальный проект по климатологии осадков (ГПКО) с 1979 года обеспечивает ежемесячные глобальные оценки количества осадков в пределах района, ограниченного областью 2,5° по широте и 2,5° по долготе (Adler and others, 2003). Независимые оценки количества осадков, обычно основанные на наблюдениях по осадкомерам, дают необходимый анализ точности оценок количества осадков, полученных в рамках ГПКО, хотя погрешности взятия проб между этими системами измерений требуют статистической оценки. Это было недавно достигнуто благодаря разложению изменения разницы между спутниковой и осадкомерной оценками на погрешность спутникового датчика и ошибку взятия проб с осадкомера (Gebremichael and others, 2003).
Глава 3. Измерение количества осадков

4.1 ИСПАРЕНИЕ, СУММАРНОЕ ИСПАРЕНИЕ И ПЕРЕХВАТ ОСАДКОВ

4.1.1 Общие положения
Испарение и транспирация — это основные элементы гидрологического цикла. Во время явления поверхностного стока эти потери весьма незначительны, и ими можно пренебречь. В основном испарение и транспирация имеют место в период между явлениями стока, который обычно является длительным. Следовательно, эти процессы наиболее важны именно в это время. Суммарный эффект испарения и транспирации называется суммарным испарением (эвапотранспирацией). Над большими площадями в умеренном поясе две трети годового количества осадков испаряются, а оставшаяся одна треть в виде стока или через подземные воды попадает в океан. В засушливых районах эвапотранспирация может быть еще более значительной, возвращая в атмосферу 90 и более процентов годовых осадков. Испарение связывает гидрологию с атмосферными науками, а транспирация — с сельскохозяйственными.

4.1.2 Определения
Испарение
Испарение — это процесс перехода воды из жидкого или твердого состояния в газообразное посредством преобразования тепловой энергии.

Испарение является до такой степени важным процессом гидрологического цикла, что на материках приблизительно 70–75 % общего годового количества осадков возвращается в атмосферу и транспирацию. В зонах с жарким климатом потери воды из-за испарения с поверхности рек, каналов и открытых хранилищ воды жизненно важны, поскольку на испарение растрачивается значительная часть всех имеющихся водных ресурсов. Это важно потому, что большая часть воды, забранной для полезного использования, в итоге возвращается в водохранилища.

Факторы, контролирующие испарение, известны уже долгое время, но оценивать их сложно из-за их взаимосвязанных эффектов. Однако на испарение влияют температура, ветер, атмосферное давление, влажность, качество воды, глубина воды, тип почвы и вид ландшафта, а также форма поверхности.

Транспирация
Транспирация — это природный процесс, связанный с физиологией растений, при котором вода берется корнями из запасов почвенной влаги, проходит через структуру растения и испаряется с клеток листа, называемых устьицами.

Количество воды, хранящееся в растении, составляет менее одного процента от того количества, которое оно теряет в течение периода вегетации. С точки зрения гидрологии, растения подобны насосам, которые выкачивают воды из почвы и поднимают ее до атмосферы.

На транспирацию воздействуют физиологические и природные факторы. Устьица открываются и закрываются в ответ на изменение условий окружающей среды, таких, например, как свет и темнота, тепло и холод. Факторы окружающей среды, влияющие на транспирацию, по существу те же, что и для испарения, но их можно рассматривать несколько иначе.

С практической точки зрения, градиент упругости водяного пара, температура, солнечная радиация, ветер и доступная влажность почвы являются самыми важными факторами, влияющими на транспирацию.
Суммарное испарение

Термин «суммарное испарение» обозначает водяной пар, полученный с водосбора в результате роста растений в водосборе.

Суммарное испарение и суммарное потребление включают в себя и транспирацию воды растениями, и испарение со свободных поверхностей, с почвы, снега, льда и растений. Важно объяснить разницу между суммарным испарением и суммарным потреблением. Суммарное потребление может быть определено путем анализа совпадающих записей о количестве осадков и стоке с водосбора.

Существует существенная разница между суммарным испарением и испарением со свободной поверхности. Транспирация связана с ростом растений и, следовательно, возникает исключительно тогда, когда растение растет в результате суточной и сезонной изменчивости. Транспирация накладывает эти изменения на нормальное годовое испарение со свободной поверхности воды.

Потенциальное суммарное испарение

Потенциальное суммарное испарение определяется как суммарное испарение, которое может возникнуть при условии постоянного наличия необходимого количества воды, достаточного для сплошного растительного покрова.

Этот термин подразумевает идеальное снабжение растений водой. В случае, если водное снабжение меньше, чем потенциальное суммарное испарение, дефицит будет покрыт из запасов влаги в почве до тех пор, пока не будет использовано приблизительно 50 % доступного объема. При дальнейшей нехватке влаги фактическое суммарное испарение станет меньше, чем потенциальное суммарное испарение, и это будет продолжаться до тех пор, пока не будет достигнута точка завядания, когда суммарное испарение прекратится.

Перехват осадков

Перехват осадков — это та порция осадков, которую может собрать растительный покров во время их выпадения на земную поверхность и которую может испариться в дальнейшем. Объем потерянной вследствие этого воды называется потерей на перехват.
приборов и методики наблюдений. Расчеты испарения и эвапотранспирации с обширных площадей свободной водной поверхности и суши различными косвенными методами также отдельно рассматриваются в этой главе. Некоторые прямые методы рассмотрены далее.

Водные испарители
Для оценки испарения с открытых водных объектов часто пользуются данными об испарении, полученными с помощью водных испарителей. В настоящее время применяются водные испарители с различными типами испарительных сосудов: квадратными, круглыми, установленными на поверхности почвы и погруженными в нее на такую глубину, чтобы уровень воды в испарительном сосуде находился вровень с поверхностью почвы. Водные испарители устанавливаются иногда и на закоренелых плотах на озерах и других водах объектах.

Среди различных типов испарителей имеется три, заслуживающих особого упоминания, — это испаритель класса А, принятый в США (рисунок I.4.1), испаритель ГГИ-3000 (рисунок I.4.2) и испарительный бассейн площадью 20 м², принятые в Российской Федерации. Американский испаритель класса А был рекомендован ВМО и Международной ассоциацией гидрологических наук (МАГН) в качестве эталонного прибора, поскольку работа этого испарителя изучалась в разнообразных климатических условиях, в широком диапазоне географических широт и высотных зон. Испаритель ГГИ-3000 и испарительный бассейн площадью 20 м² применяются в Российской Федерации и ряде других стран с различными климатическими условиями, поскольку они надежны в эксплуатации, и в связи с их показаний с метеорологическими элементами, обусловливающими испарение, отличается весьма высокой устойчивостью. ВМО финансировала проведение в ряде стран сравнений между испарителем класса А, испарителем ГГИ-3000 и испарительным бассейном 20 м² (ВМО, 1976), что в результате способствовало подготовке оперативных рекомендаций о возможности использования этих испарителей в разных климатических и физико-географических условиях.

Кроме испарительного сосуда, на водонагревательных станциях часто применяются интегрирующий анемометр или анемограф, нерегистрирующие осадкомеры, термометры или термографы для получения данных о температуре воды в испарительном сосуде, максимальные и минимальные термометры или термографы для измерения температуры воздуха, гигрометр, психрометр.

При установке испарителя важно быть уверенным в том, что выбранная площадка является достаточно ровной и свободной от разного рода заграждений. В районах, где по почвенным и климатическим условиям не может развиться почвенный покров, поверхность грунта на площадке следует поддерживать в таком виде, чтобы она была как можно более схожа с естественной поверхностью грунта в данном районе. Такие заграждения, как деревья, здания, кустарники и приборные будки, должны находиться от испарительной установки на расстоянии, не меньшем их четырехкратной высоты. Ни при каких обстоятельствах нельзя устанавливать испаритель или будку для приборов на бетонной плите или бетонном основании, на асфальте или подсыпке из щебня.

Приборы необходимо располагать на площадке так, чтобы они не отбрасывали тень на испарительный сосуд. Минимальный размер площадки должен быть 15 x 20 м. Площадку следует окружить оградой для защиты приборов от повреждений и для того, чтобы помешать животным пить воду из испарителя. Конструкция ограды не должна искать структуру ветра над испарителем. Если площадка расположена
в ненаселенной местности, особенно в аридных и тропических районах, часто бывает необходимо защищать испарители от птиц и небольших животных с помощью химических репеллентов или проволочной сетки стандартного образца, натянутой над испарителем. Для того чтобы оценить погрешность, возникающую в результате влияния проволочной сетки на поле ветра и термические характеристики испарительного сосуда, необходимо сравнить показания стандартного испарителя с показаниями испарителя, покрытого сеткой, установленных в сравнимых условиях.

Уровень воды в испарители должен быть тщательно измерен до и после долива воды.

Измерения проводятся двумя способами:

a) уровень воды измеряется с помощью крючковой рейки, состоящей из подвижной шкалы и верньера с крючком, которые помещаются в успокоительную камеру испарителя; в устройстве другого вида используют поплавок; для долива или отлива воды в сосуде до определенной метки во время каждого наблюдения используется градуированная мензурка;

b) уровень воды может быть измерен и таким способом:

i) бюветка небольшого диаметра, снабженная клапаном, ставится на реперную отметку ниже уровня воды в испарителе;

ii) клапан открывается, и уровни воды в бюветке и испарителе уравниваются;

iii) клапан закрывается, и объем воды, захваченный бюветкой, точно измеряется мензуркой.

Высота уровня воды над реперной отметкой в испарителе определяется по объему воды в бюветке и ее размерам.

Величина испарения за сутки вычисляется как разность между уровнями воды в испарительном сосуде за последовательные сутки с введением поправок на выпавшие за это время осадки. Величина испарения за время между двумя измерениями определяется по формуле:

\[E = P \pm \Delta d \] \hspace{0.5cm} (4.1)

где \(P \) — слой осадков, выпавших за время между измерениями; \(\Delta d \) — слой воды долитой (+) или отлитой (−) из испарительного сосуда.

Для наблюдений применяются также несколько типов автоматических испарителей. В этих испарителях автоматически поддерживается постоянный уровень воды в испарительном сосуде путем долива воды из запасного бака или слива ее в случае выпадения осадков. Количество добавленной или слитой воды регистрируется автоматически.

Основная трудность в использовании испарителя класса A возникает при использовании коэффициентов для перевода измерений с небольших резервуаров на большие открытые водные объекты. С помощью понятия нечеткой логики, предложенной Кескиным и др. (Keskin and others, 2004), можно получить альтернативный способ оценки испарения.

Испарение со снега

Для измерения испарения с поверхности снежного покрова или конденсации влаги в ней во многих странах применяются испарители, изготовленные из полиэтилена или прозрачной пластмассы. Поверхность снеговых испарителей должна иметь площадь не менее 200 см² и глубину 10 см.

Испаритель заполняется вырезанным из снежного покрова образцом снега, взвешиваемым вместе с образцом и устанавливаемым в снег или на снег. Необходимо следить за тем, чтобы характер поверхности образца снега в испарителе был подобен поверхности снежного покрова в месте установки испарителя. В конце интервала времени, в течение которого измеряют испарение, испаритель извлекают из снежного покрова, насухо вытирают наружную поверхность и вторично взвешивают. По разности в весе между первым и вторым взвешиванием определяется величина испарения или конденсации в сантиметрах. Измерения, проведенные во время снегопада или метели, недействительны. В период снеготаяния взвешивание испарителей и смесь образцов в них следует производить чаще, поскольку в результате оседания снежного покрова, края испарителя обнажаются и изменяют структуру воздушного потока над образцом снега.

4.1.3.2 Косвенные методы

В связи с трудностями, связанными с непосредственным измерением испарения с озер и водохранилищ, испарение обычно определяется косвенными методами, такими, как методы водного и энергетического баланса, аэродинамический метод или сочетанием этих методов. В косвенных методах используются наблюдения за следующими метеорологическими элементами: солнечной и длинноволновой радиацией, температурой воздуха и температурой поверхности воды, влажностью воздуха и упругостью водяного пара, ветром. Приборы и техника наблюдений для определения этих элементов описаны в нижеследующих разделах. Способы использования
данных наблюдений за перечисленными элементами для расчета испарения различными косвенными методами изложены в этой главе.

Солнечная радиация

Фактическую, общую солнечную (коротковолновую) радиацию следует измерять неподалеку от водоема с помощью пиранометра, и необходимо вести ее непрерывную запись. Пиранометром измеряется приходящая на горизонтальную поверхность коротковолновая радиация. Самые современные пиранометры основаны на системе термоэлементов и покрыты одиночным или двойным стеклянными куполами, которые пропускают к чувствительному элементу пиранометра только радиацию с длиной волны 0,3–3 мкм (рисунок I.4.3). Некоторые пиранометры имеют полностью зачерненную поверхность, к которой прикреплена половина термоэлементов, а остальные установлены таким образом, что фиксируют мало меняющуюся эталонную температуру защищенного большого латунного блока. У других часть чувствительной поверхности имеет черный, а часть белый цвет, и блоки термоэлементов подсоединены к обеим частям.

Длинноволновая радиация

Длинноволновая радиация измеряется косвенным путем с помощью плоских радиометров. Эти приборы не избирательны по отношению к различным длинам волн и измеряют все длины волн. Величину длинноволновой радиации вычисляют по разности суммарной радиации, излучаемой солнцем и небесным сводом и измеренной радиометром, и солнечной радиации, измеренной пиранометром в том же месте.

Один из типов длинноволнового радиометра представляет собой квадратную пластинку размером 5 см², смонтированную горизонтально в таком положении, что ее обдает поток воздуха от небольшого вентилятора. Пластина состоит из трех слоев: верхнего — из зачерненного алюминия, нижнего — из полированного алюминия и прослойки между ними из изоляционного материала. Вертикальный температурный градиент прибора измеряется с помощью термоэлемента. Разность потенциалов в термопаре пропорциональна проходящему через пластинку потоку тепла, который в свою очередь пропорционален энергии, получаемой зачерненной поверхностью, за вычетом излучения абсолютно черного тела. Для того чтобы ввести соответствующую поправку, температура зачерненной поверхности измеряется специальной термопарой. Вентилятор служит для устранения влияния ветра на тарировочный коэффициент прибора.

Прибором другого типа является суммарный пиррадиометр, который измеряет разницу между полной (коротковолновой и длинноволновой) приходящей (направленной вниз) и уходящей (направленной вверх) радиацией. Он состоит из горизонтально установленной пластины, обе поверхности которой зачернены. Часть блока термоэлементов подсоединенена к верхней поверхности, а остальные к нижней, и, таким образом, его напряжение на выходе пропорционально суммарной радиации с длиной волны 0,3–100 мкм. Такие устройства бывают двух типов: вентилируемые и защищенные, для снижения влияния конвективного теплопереноса на чувствительный элемент. Приборы следует устанавливать на высоте не менее 1 м над репрезентативным растительным покровом.

Температура воздуха

Температуру воздуха следует измерять на высоте 2 м над поверхностью воды в центральной части водоема. На небольших водоемах температура воздуха мало меняется при движении воздушного потока над водной поверхностью, и в таких случаях измерение можно проводить на наветренном берегу.

Несмотря на то что наблюдения за температурой воздуха с интервалом в один, четыре или шесть часов дают в общем удовлетворительные результаты, все же желательно иметь непрерывную запись температуры, особенно в связи с измерениями влажности. Подходящими самописцами являются электрические термографы, в которых используются термопары с записью на многоканальном потенциометре, применяемом для измерения радиации.

При измерении температуры воздуха необходимо затенять термометр от солнечных лучей, не нарушая естественной вентиляции. Для термометров с термопарами сконструированы специальные экраны для защиты от радиации. Точность измерений температуры воздуха должна находиться в пределах ±0,3 °C.
Температура поверхности воды

Для измерения температуры воды применяются термометры различных типов: стеклянные ртутные и металлические ртутные термометры (в том числе максимальные и минимальные термометры и опрокидывающиеся термометры); платиновые термометры сопротивления или основанные на термисторах с электронной схемой и со счетчиком или самописцем; термопары с вольтметром и устройством записи или без него.

Выбор термометра подходящего типа зависит от конкретного применения. Например, прямые наблюдения лучше выполнять стеклянным ртутным термометром, а непрерывную запись температуры воды можно получить с помощью термометра сопротивления или термопары с вольтметром.

Термографы, осуществляющие непрерывную запись температуры воды, обычно состоят из чувствительного элемента в металлическом корпусе, погруженного в воду, и круглого или цилиндрического записывающего устройства с трубкой Бурдона. Термографы требуют правильной установки, чтобы полученные результаты измерений были репрезентативными (Herschy, 1971).

На автоматических станциях, как правило, осуществляющих наблюдения и за другими переменными, где измерения температуры воды записываются на магнитную ленту или передаются по линиям связи на значительные расстояния, чаще всего применяются платиновые термометры сопротивления или термисторы. Эти термометры не имеют передвигающихся частей, поэтому они наиболее надежны в эксплуатации и часто более точны и чувствительны. Чувствительный элемент подключается в электрическую цепь через мост Уитстона, и электронный усилитель повышает мощность выходного сигнала до требуемой для записи или передачи на расстояние.

Обычно точность, с которой необходимо измерять температуру воды, составляет ±0,1 °C, за исключением измерений для специальных целей, требующих более высокой точности. Во многих случаях вполне приемлемой оказывается точность наблюдений за температурой воды ±0,5 °C, иногда она может приближаться к 1 °C. Поэтому важно точно определить требования к точности измерения, чтобы выбрать соответствующий тип термометра.

Влажность воздуха или упругость водяного пара

Измерения влажности проводятся в том же месте, где и измерения температуры воздуха. Наиболее пригодны в качестве самописцев психрометры, в которых применяны термометры с термоэлементами. Хорошие результаты можно получить, пользуясь термометрами с термоэлементами, описанными в пункте о температуре воздуха, с добавлением такого же термометра для измерения температуры смоченного термометра. Для смоченного термометра требуется матерчатый лоскут и психрометрический стакан, смонтированный таким образом, чтобы вода, подходящая к термометру, имела действительно температуру смоченного шарика психрометрического термометра. Смоченные термометры должны быть экранированы от радиации, и в тоже время они должны достаточно вентилироваться для того, чтобы по ним можно было получить истинную температуру смоченного термометра. При скорости ветра более 0,5 м·с⁻¹ экран, подобный экрану, применяемому при измерениях температуры воздуха, обеспечивает достаточную вентиляцию. На практике экран для смоченного термометра помещают непосредственно под экраном для измерения температуры воздуха.

Если измерения температуры по сухому и смоченному термометрам проводятся с точностью до ±0,3 °C, то при умеренных температурах точность определения относительной влажности составит ±7 %, что вполне достаточно для расчета упругости водяного пара.

Ветер

Скорость ветра следует измерять в центральной части озера или водохранилища на высоте 2 м над водной поверхностью. Обычно приборы устанавливаются на стоящем на якоре плоту.

Для определения средней суточной скорости ветра вполне пригодны анемометры любого типа, подходящие для дистанционных отсчетов или записей. Трехчашечный вращающийся анемометр или лопастной анемометр наиболее удобны для дистанционной записи. Точность измерения трехчашечным анемометром или лопастным анемометром составляет обычно ±0,5 м·с⁻¹, что считается приемлемым для измерений испарения.

Если применяется анемометр суммирующего типа, то необходимо снимать показания счетчика через фиксированные интервалы времени (желательно через сутки). Анемометр с электрическими контактами следует снабдить записывающим устройством. Для этого можно использовать электрический отметчик с записью на краях термограммы.

4.1.4 Измерение суммарного испарения

Почвенные испарители и лизиметры

Величина суммарного испарения (эвапотранспирация) может быть оценена с помощью почвенных
ГЛАВА 4. ИСПАРЕНИЕ, СУММАРНОЕ ИСПАРЕНИЕ И ВЛАЖНОСТЬ ПОЧВЫ I.4-7

испарителей и лизиметров, методами водного и тепло-
вого балансов, методом турбулентной диффузии и с
помощью различных эмпирических формул, осно-
ванных на использовании данных метеорологических
наблюдений. Применение почвенных испарителей и
лизиметров позволяет проводить прямые измерения
суммарного испарения с различных поверхностей
суши и испарения с почвы под сельскохозяйствен-
ными культурами. Эти приборы достаточно просты
в обращении и точны, при условии, что все требова-
ния, касающиеся их установки и методов проведения
наблюдений, соблюдены. Величина транспирации рас-
тений вычисляется по разности суммарного испаре-
ния и испарения с почвы, измеренными одновре-
менно.

В соответствии с принципами их действия почвен-
ные испарители и лизиметры подразделяются на:

а) весовые, использующие механические весы для
определения изменений влагосодержания;

б) гидравлические, основанные на гидростатичес-
ком принципе вз вещивания;

в) объемные, когда содержание воды поддержива
ется постоянным, а суммарное испарение опре-
деляется по количеству долитой или слитой воды.

Общепринятого международного стандартного
прибора для измерения суммарного испарения не
существует.

Общие требования, предъявляемые при выборе мес-
topоложения испарительных площадок, — следующие:

а) место, выбранное для устройства испарительной
площадки должно быть типичным для окружаю-
щей местности в отношении орошения, характери-
стик почвы (ее структуры и состава), уклона,
растительного покрова;

б) испарительную площадку следует располагать вне
зоны влияния отдельных строений и деревьев.
Она должна находиться на расстоянии не менее
100–150 м от края сельскохозяйственного поля и
не далее 3–4 км от метеорологической станции.
Почвенные монолиты для испарителей и лизи-
метров следует брать в радиусе 50 м от испари-
тельной площадки, а почва и растительность в
монолите должны соответствовать почвенному и
растительному покрову площадки.

4.1.5 Измерения испарения
и суммарного испарения
с помощью дистанционного
зондирования [ГОМС D]

Для получения косвенных оценок суммарного испа-
рения в различных временных и пространствен-
ных масштабах используются наблюдения на основа-
нии дистанционного зондирования, объединенные с
дополнительными метеорологическими данными (Schulz
and Engman, 2000). В последние годы наиболее зна-
чительного успеха достигло дистанционное зондиро-
вание следующих параметров:

а) приходящей солнечной радиации;

б) альбедо поверхности;

в) растительного покрова;

c) температуры поверхности;

d) поверхностной влажности почвы.

Переменные, используемые при дистанционном
зондировании

Измерения радиации и температуры воздуха обычно
проводятся в одном и том же месте — либо на сере-
дине озера или водохранилища, либо на станции, на
наветренном берегу. Это позволяет записывать под-
ряд несколько элементов с помощью одного многока-
нального самописца. При графической записи иногда
используются интегрирующие устройства. С помо-
щью этих устройств визуально определяются средние
значения каждого элемента за период, за который
рассчитывается испарение (обычно за 10 дней или две
недели).

Дистанционное зондирование многих важных
для оценки испарения параметров осуществляется
посредством измерения электромагнитной радиаций,
отраженной от земной поверхности или излучаемой
ей, в определённом диапазоне волн. Приходящую
солнечную радиацию можно оценить с помощью спутниковых наблюдений облачности прежде всего
с геостационарных орбит, используя многоспект-
ральное устройство сканирования (МСС) в видимой,
ближней инфракрасной и тепловой инфракрасной
частих электромагнитного спектра (Brakke and Kane-
masu, 1981; Tarpley, 1979; Gautier and others, 1980).
Оценить альбедо поверхности можно при ясном небе
с помощью измерений, охватывающих видимую и
ближнюю часть инфракрасного диапазона волн
(Jackson, 1985; Brest and Goward, 1987). Температура
поверхности оценивается, исходя из измерений МСС
в термальной части инфракрасного диапазона излу-
чаемого потока радиации (Engman and Gurney, 1991).

Тем не менее, был достигнут определенный прог-
ресс в дистанционном зондировании параметров
атмосферы, влияющих на эвапотранспирацию, таких
как:

а) температура воздуха у поверхности;

б) градиент водяного пара у поверхности;

в) ветры у поверхности.

Таким образом, благодаря своей площади охвата, дис-
танционное зондирование играет потенциально
важную роль в процессе пространственной экстра-
поляции эвапотранспирации.
Дистанционное зондирование переменных
эвапотранспирации

В последние годы исследователи начали использовать данные, полученные с помощью спутников (Bastiaanssen and others, 1998; Choudhury, 1997; Granger, 1997) для оценки фактического регионального суммарного испарения. Дистанционное зондирование важных для оценки суммарного испарения параметров осуществляется посредством измерения электромагнитной радиации, отраженной от земной поверхности или излучаемой ею в определенном диапазоне волн. Предварительную оценку приходящей солнечной радиации, альбедо и температуры поверхности можно осуществить с помощью спутниковых измерений, описанных в пункте 4.1.3. Влажность почвы может быть оценена с использованием измерений микроволновых свойств почвы (микроволновое излучение и отражение или обратное рассеяние от земной поверхности). Однако из-за упомянутых ранее факторов, таких как шероховатость поверхности и растительный покров, могут возникать неопределенности в таком методе оценки влажности почвы.

Наиболее практичный подход в использовании дистанционного зондирования в будущем будет включать повторяющиеся наблюдения на видимых, ближних и тепловых инфракрасных, а также микроволновых волнах излучения. Компоненты для определения явного потока тепла будут измеряться с помощью спутников наблюдения за Землей (EOS). Измерить скрытый поток тепла прямыми методами будет невозможно, но с помощью приборов EOS можно будет получить необходимые данные для оценки эвапотранспирации в локальном, региональном и глобальном масштабах.

4.2 ОЦЕНКА ИСПАРЕНИЯ СО СВОБОДНЫХ ПОВЕРХНОСТЕЙ

4.2.1 Общие положения [ГОСС I45]

Испарение с водной поверхности можно определить различными методами, например такими, как:
a) метод водного баланса;
b) метод энергетического баланса;
c) методы переноса массы;
d) комбинированные методы;
e) эмпирические формулы.

Для определения испарения можно применить любой из приведенных методов. Обычно оборудование для метода энергетического баланса и метода переноса массы достаточно дорого, поэтому поддерживать такие наблюдения сложно с финансовой точки зрения.

Причиной чаще используются метод водного баланса и водные испарители. Измерение испарения с помощью испарителя — это самый низкозатратный метод, и он зачастую позволяет получать хорошие оценки годового испарения. Тем не менее выбор метода зависит от требуемого уровня точности. Поскольку улучшается возможность оценивать параметры в водном и энергетическом балансе, итоговые оценки испарения тоже будут улучшаться.

4.2.2 Метод водного баланса

Этот метод основан на уравнении неразрывности и используется с целью расчета испарения как:

$$ E = I - O - \Delta S $$

где E — испарение; I — приток; O — отток; ΔS — изменение запаса воды.

Добавляя суффиксы s и g к различным слагаемым в уравнении 4.2 для обозначения векторов над и под поверхностью земли соответственно, уравнение может быть записано в виде:

$$ E_s = P + R_1 - R_2 - R_g - T_s - F - \Delta S_s $$

где E_s — испарение с водохранилищ; P — осадки; R_1 — поверхностный сток, втекающий в водохранилище; R_2 — поверхностный сток, вытекающий из водохранилища; R_g — приток грунтовых вод; T_s — потери на транспирацию; F — инфильтрация (или просачивание) и ΔS_s — изменение запаса воды.

Если полное просачивание ($R_g - F = O_s$) и транспирация T_s равны нулю, тогда уравнение 4.3 можно переписать в виде:

$$ E_s = P + R_1 - R_2 + O_s - \Delta S_s $$

Все члены уравнения выражены в единицах объема за интересующий период, который должен быть не меньше недели. Хотя метод водного баланса обладает несомненным преимуществом, поскольку прост в теории, его недостаток заключается в том, что ошибки при измерении параметров, используемых в уравнении 4.4, непосредственно отражаются на расчете объема испарения. Таким образом, его не рекомендуется использовать, если рассматриваемый период менее месяца и если оценка испарения ожидается в пределах 5 % от фактического объема.

Возможно, самым сложным параметром для оценки является просачивание F. Этот компонент можно оценить, зная водопроницаемость озерной котловины и гидравлический градиент. Тем не менее следует признать, что метод водного баланса хорошо применим...
ГЛАВА 4. ИСПАРЕНИЕ, СУММАРНОЕ ИСПАРЕНИЕ И ВЛАЖНОСТЬ ПОЧВЫ

4.2.3 Метод энергетического баланса

Метод энергетического баланса описывает уравнение неразрывности в энергетических величинах. Его используют для расчета испарения с океанов и озер, например водохранилища Элефант Бьютт в штате Нью-Мексико (Gunaji, 1968). С помощью уравнения рассчитывают входящую и исходящую энергию, сбалансированную количеством энергии, накопленной в системе. Точность оценок испарения, основанных на методе энергетического баланса, сильно зависит от надежности и точности данных измерений. При хороших условиях средняя погрешность для летнего периода составляет 10 %, для зимних месяцев — 20 %.

Уравнение теплового баланса для озера записывается в виде (Viessman and others, 1989):

\[Q_0 = Q_s - Q_r + Q_a - Q_{ar} - Q_{bs} + Q_v - Q_e - Q_h - Q_w, \]
(4.5)

где \(Q_0 \) — увеличение накопленной энергией водой; \(Q_s \) — фактическая солнечная радиация на поверхности воды; \(Q_r \) — отраженная солнечная радиация; \(Q_a \) — приходящая из атмосферы длинноволновая радиация; \(Q_{ar} \) — отраженная длинноволновая радиация; \(Q_{bs} \) — длинноволновая радиация, испущенная водой; \(Q_v \) — поступление и вынос тепла (чистая энергия притока и оттока воды); \(Q_e \) — энергия, использованная в испарении; \(Q_h \) — проведенная водой энергия (явное тепло); \(Q_w \) — энергия, выделяемая с испаряющейся водой.

Все величины уравнения 4.5 измеряются в ваттах на квадратный метр в день (Вт⋅м⁻²⋅день). Нагреванием в результате химических превращений и биологических процессов пренебрегают, поскольку этот переход энергии происходит в плоскости "вода–земля". Переход кинетической энергии в тепловую также не учитывается. Количественно эти величины очень малы в сравнении с другими величинами в балансе при рассмотрении крупных водных объектов. Таким образом, пренебрежение ими незначительно влияет на надежность результатов.

Каждый член уравнения энергетического баланса либо измеряется непосредственно, либо рассчитывается на основании известных соотношений. Способы оценки каждого члена уравнения описаны ниже.

Следующие члены в уравнении 4.5, которые могут быть измерены, это \(Q_s, Q_i \) и \(Q_a \), а уравнение радиационного баланса может быть представлено в следующем виде:

\[R_i = Q_s - Q_{sr} + Q_a - Q_{ar} - Q_{bs}. \]
(4.6)

Все элементы выражены в Вт⋅м⁻².

Детальное описание приборов, методов измерений и способов, используемых для оценки вышеуказанных составляющих можно найти в разделах 4.1.3, 4.1.4 и 4.1.5 и в Руководстве по метеорологическим приборам и методам наблюдений (ВМО-№ 8).

Отраженную длинноволновую радиацию (\(Q_{sr} \)) можно принимать равной 3 % от длинноволновой радиации, поступившей к водной поверхности.

Длинноволновая радиация, испущенная водой (\(Q_{bs} \)), рассчитывается согласно закону Стефана–Больцмана, выраженному для абсолютно черного тела, при коэффициенте излучения для воды 0,97. Уравнение для расчета радиации, излучаемой водной поверхностью, имеет вид:

\[Q_{bs} = 0,97\sigma q^4, \]
(4.7)

где \(Q_{bs} \) — радиация, излучаемая водной поверхностью, Вт⋅м⁻²; \(\sigma \) — постоянная Стефана–Больцмана (5,67 х 10⁻⁸ Вт⋅м⁻²⋅К⁻⁴); и \(q \) — температура поверхности воды в °К. Для вычислительных целей средняя температура поверхности воды определяется для каждого периода по данным самописцев, установленных вблизи центра водохранилища. Температура переводится в °К, а средняя величина радиации, излучаемой водной поверхностью, рассчитывается за исследуемый период в Вт⋅м⁻².

Запас тепловой энергии в водохранилище за данный срок рассчитывается по температуре воды, измеренной
для этого же срока. Такие измерения температуры, точность которых должна быть в пределах 0,1 °С, проводятся в основном с двухнедельным или месячным интервалом. Водная масса водохранилища может быть разделена на несколько слоев от поверхности до dna. Объем воды в каждом из этих слоев определяется по зависимости объем — объем. Наблюдения за температурой в каждом отдельном слое усредняются, чтобы получить среднюю температуру всего объема воды.

Сумма произведенных объемов воды на среднюю температуру (за основу принимается температура 0 °С) дает запас тепла на определенную дату. Плотность и удельная теплоемкость воды для всего диапазона температур, которые наблюдаются в водохранилище, принимаются равными единице. Чтобы определить энергию, расходуемую на испарение \(Q_e \), необходимо оценить изменения запаса энергии, происходящие за счет адабсии энергии водой, поступающей в водохранилище или вытекающей из него. При расчете количества энергии в этих потоках в качестве исходной принимается температура 0 °С. В зависимости от изменчивости температуры при изменении расходов воды температура воды этих потоков определяется по данным непосредственных наблюдений или по самописцам (4.1.3). Если температура воды изменяется с изменением расходов воды, то ее среднее значение должно определяться как среднее взвешенное относительно расхода воды. Температура воды, пошедшей на фильтрацию в берега и просачивание, принимается равной среднегодовой температуре воздуха. Такое допущение может привести к ошибкам, но не существенным, если доля поверхностного прихода в водном балансе является существенной.

Если осадки составляют существенную часть водного баланса, то энергия, содержащаяся в выпавших осадках, необходимо учитывать. За температуру осадков принимается температура воздуха по смоченному термометру во время их выпадения. При расчете запаса энергии в каждом из указанных объемов воды используются единицы сантиметр–грамм–секунда; плотность и удельная теплоемкость принимаются равными единице для всего диапазона температур этих объемов. Умножением температуры на объем воды получают количество энергии в каждом объеме в джоулях (\(Q_v \)). Разность между рассчитанными значениями количества энергии в воде по результатам термических съемок в начале и в конце изучаемого периода покажет изменение запасов энергии в воде (\(Q_o \)).

В зимние месяцы, когда лед частично или полностью покрывает водоем, энергетический баланс изредка дает адекватный результат, потому что сложно измерить отраженную солнечную радиацию, температуру поверхности льда и площадь ледяного покрытия.

Оценки ежедневного испарения, основанные на методе энергетического баланса, в большинстве случаев не вполне надежны, потому что на практике невозможно точно определить изменения накопленной энергии за такой короткий срок. Удовлетворительные измерения можно получить в течение недели или еще более длинного срока.

При использовании метода энергетического баланса, требуемая точность достигается не для всех переменных. Например, потеряность в измерении приходящей длинноволновой радиации в 2 % дает 3–15-процентную погрешность в оценке месячного испарения, в то время как ошибка порядка 10 % в измерении отраженной солнечной энергии — всего 1–5 %. Для определения испарения по уравнению 4.5 нужно использовать следующее соотношение:

\[
B = \frac{Q_h}{Q_e},
\]

где \(B \) — отношение Боуэна (Bowen, 1926) и:

\[
Q_w = \frac{c_p Q_e (T_e - T_b)}{L},
\]

где \(c_p \) — удельная теплоемкость воды (кал/г°·С), равная 4186,8 Дж/кг·°С; \(T_e \) — температура испарившейся воды (°С); \(T_b \) — температура произвольной отметки; обычно принимают 0 °С и \(L \) — скрытое тепло испарения (кал/г), которая равна 2260 кДж/кг. Подставив эти выражения в уравнение 4.5 и разрешив относительно \(Q_e \), получаем:

\[
Q_e = \frac{Q_s - Q_r + Q_o - Q_{ar} - Q_{bs} - Q_a + Q_e}{1 + B + c_p (T_e - T_b) / L},
\]

Чтобы определить слой испарившейся воды за единицу времени, используют уравнение:

\[
E = \frac{Q_e}{\rho L},
\]

где \(E \) — испарение (м·сек⁻¹) и \(\rho \) — массовая плотность испарившейся воды (кг·м⁻³).

Следовательно, уравнение энергетического баланса примет вид:

\[
E = \frac{Q_s - Q_r + Q_o - Q_{ar} - Q_{bs} - Q_a + Q_e}{\rho \{ L (1 + B + c_p (T_e - T_b)) \}}.
\]

Отношение Боуэна можно рассчитать, используя:

\[
B = 0,61 \frac{p(T_o - T_a)}{1000 (e_o - e_a)},
\]
где \(p \) — атмосферное давление (мб); \(T_n \) — температура поверхности воды (°C); \(T_o \) — температура воздуха (°C); \(e_n \) — упругость насыщенного пара при данной температуре поверхности воды (мб); \(e_o \) — давление водяного пара (мб).

Это выражение обходит стороной проблему оценки удельной теплоты, которая не может быть получена путем непосредственного измерения.

Дистанционное зондирование некоторых важных путем непосредственного измерения, удельной теплоты, которая не может быть получена с помощью метода энергетического баланса, обходится стороной проблемы оценки пара (для водяного пара и импульса — это турбулентные процессы).

Применяемость метода энергетического баланса

Для оценки испарения со свободных поверхностей с помощью метода энергетического баланса в первую очередь следует учитывать рассмотренные ниже-пункты:

а) поток тепла, идущий со дна озера, не был принят во внимание. Это, однако, важно для неглубоких озер;

б) отношение Боуэна обеспечивает достаточно точную оценку \(Q_o \);

в) данный метод не учитывает эффект рассеяния радиации, устойчивость воздуха и водяную пыль;

г) применимость данного метода сильно зависит от возможности оценить адвективные составляющие энергии.

4.2.4 Метод переноса массы

Метод переноса массы, как следует из его названия, основан на аэродинамических законах Дальтона, который показывает, как связаны между собой испарение и давление водяного пара:

\[
E = k (e_n - e_o) ,
\]

где \(E \) — прямое испарение; \(k \) — коэффициент и зависимость от скорости ветра, атмосферного давления и других факторов; \(e_n \) и \(e_o \) — упругость насыщенного пара, определяемая по температуре поверхности воды и давлению водяного пара, соответственно. Среднесуточную температуру и относительную влажность можно использовать при определении средней упругости водяного пара \(e_o \) и среднего дефицита насыщенности \((e_n - e_o) \). Уравнение 4.14 было первоначально предложено Харбеком и Майерсом (Harbeck and Meyers, 1970).

4.2.5 Совместное применение методов аэродинамики и энергетического баланса

Возможно, наиболее широко распространенный метод расчета испарения с поверхности озера по метеорологическим факторам основан на совместном решении уравнений аэродинамики и энергетического баланса:

\[
E_f = R_n \Delta + E_a \gamma ,
\]

где \(E_f \) — испарение со свободной водной поверхности;

\(\Delta = \frac{e_n - e_o}{T_n - T_o} \) — уклон кривой упругости насыщенного пара при любой температуре \(\theta_o \), которые занесены в таблицу Братсерта как \(\gamma / \Delta \) по отношению к \(T_n \) (Brut saert, 1982, рисунок 10.2); \(R_n \) — результирующая радиация; \(\gamma \) — постоянная в психрометрическом уравнении; \(E_a \) — то же, что и в уравнении 4.14.

Постоянная в психрометрическом уравнении — при выражении температуры в °C является той же, что и для отношения Боуэна, и имеет значение 0, 61 при давлении в 1 000 мб. Радиационный баланс \(R_n \) (МДж·м⁻²·сут⁻¹) можно рассчитать по уравнению:

\[
R_n = \left(0.25 + 0.5 \frac{n}{N} \right) S_0 - \left(0.9 \frac{n}{N} + 0.1 \right) ,
\]

где \(n/N \) — относительная продолжительность солнечного сияния; \(S_0 \) — внеземное излучение (МДж·м⁻²·сут⁻¹); \(e_o \) — фактическая упругость водяного пара в воздухе, мм ртутного столба; \(\sigma \) — постоянная Стефана–Больцмана, также выраженная через эквивалент испарения, мм·сут⁻¹, и \(T \) — средняя температура воздуха (абсолютная), выраженная в градусах Кельвина.
Хотя может оказаться необходимым использовать именно это уравнение, предпочтение следует отдавать измеренным значениям солнечной и длинноволновой радиации.

Подобный подход использован Колером и др. (Kohler and others, 1959), графическое выражение предложенной зависимости показано на рисунке I.4.4. Для применения этого метода необходимы данные наблюдений за солнечной радиацией, температурой воздуха, точкой росы и скоростью ветра на высоте анометра над испарителем класса А. При отсутствии наблюдений за солнечной радиацией ее можно оценить по данным об относительной продолжительности солнечного сияния или облачности. Расчет испарения этим методом за короткие периоды времени можно выполнить лишь для очень мелких озер при незначительной адвекции энергии или ее полном отсутствии. Для глубоких озер при наличии значительной адвекции энергии за счет притока и оттока в рассчитанную величину испарения необходимо вводить поправку, учитывающую прямую адвекцию тепла и изменение запаса энергии в водной массе. Эти два элемента рассматриваются при описании метода энергетического баланса в пункте 4.2.3. Однако не вся адвективная энергия и энергия, выделяемая за счет изменения запаса энергии, расходуется на испарение. Та доля этой энергии, которая расходуется на испарение, может быть определена по зависимости, представленной на рисунке I.4.5. Для применения этой зависимости необходимы данные наблюдений за температурой водной

Рисунок I.4.4. Расчетные графики для определения испарения с озера.
поверхности и скоростью ветра на высоте 4 м над водной поверхностью. С помощью этого метода можно получить достаточно надежные величины испарения с озера за недельные и месячные периоды, если выполнены оценки адvection энергии и факторов запаса энергии.

4.2.6 Экстраполяция данных водных испарителей [ГОМС C46]

Значения испарения, получаемые по наземным или вкопанным в грунт испарителям, зависят от характеристик испарителя. На показания вкопанных в грунт испарителей влияют скрытые утечки, скопления мусора на поверхности, и, кроме того, условия на границе испаритель—почва отличаются от свойств водной массы большого озера. В наземных испарителях происходит теплообмен через боковые стенки, а также имеются место и другие явления, которые отсутствуют на озерах. В плавучие же испарители вода может легко заливаться или выплескиваться из них, к тому же их установка и обслуживание дорого стоят.

Испарители имеют гораздо меньший запас тепла, чем озера, и дают несколько отличающийся годовой ход испарения. Экстремальные величины испарения по данным испарителей наступают раньше. Достоверные оценки испарения за год с озера можно получить путем умножения значения годового испарения, полученного по испарителю, на соответствующий поправочный коэффициент. Эти оценки будут надежными только в том случае, если можно принять, что любое тепло, поступившее в озеро в течение года, согласно уравнению баланса приведет к изменению общего запаса тепла. Поправочный коэффициент для определенного испарителя определяется путем сравнения его показаний с действительным испарением с озера, если такие данные имеются, или чаще путем сравнения с показаниями другого довольно большого испарителя, имитирующего условия озера (например вкопанные испарители с диаметром четыре и более метров). Этот коэффициент для отдельно взятого испарителя в некоторой степени зависит также от климатического режима местности, т. е. он будет разным в сухих и влажных условиях. Для того чтобы показания испарителя были близки к действительному испарению с озера, его следует устанавливать таким образом, чтобы он не подвергался влиянию, которое озеро оказывает на окружающую среду. Следовательно, он должен быть установлен вблизи

Рисунок I.4.5. Доля адвективного тепла, расходуемого на испарение в озере
оезера, но с подветренной стороны в отношении господствующего ветра. Установка испарителей на островах нежелательна.

Одним из методов определения климатической поправки к коэффициенту испарителя является сравнение его показаний с большими испарителями, проводимое в разных условиях. Этот метод применяется в Содружестве Независимых Государств, где сравниваются показания испарителя ГПИ-3000 и испарительного бассейна площадью 20 м². Полученные таким образом переходные коэффициенты от испарителя к озеру для испарителя ГПИ-3000 колеблются в пределах от 0,75 до 1,00. Для оценки среднемесячного испарения такой коэффициент для плувучего испарителя ГПИ-3000 определяется по следующему уравнению:

\[
\alpha = 0,8 \frac{e_0 - e_{200}^0 \beta}{e_0^' - e_{200}^0 \gamma},
\]

(4.17)

где \(e_0 \) — среднемесячная максимальная упругость водяного пара, гПа, определяемая по температуре поверхности воды водоема; \(e_0^' \) — среднемесячная максимальная упругость водяного пара, гПа, определяемая по температуре поверхности воды в плувучем испарителе ГПИ-3000; \(e_{200} \) — среднемесячная упругость водяного пара на высоте 200 см над водной поверхностью, гПа; \(\beta \) — поправочный коэффициент на площадь водоема; \(\gamma \) — коэффициент, который зависит от расстояния \(l \), определяемого по среднему направлению ветра от берега к испарителю (резон). Отношение \(\beta/\gamma \) необходимо определять только для водоемов, расположенных в тундре, лесной и лесостепной зонах в случае установки испарителя на расстоянии свыше 500 м от берега. Во всех остальных случаях это отношение принимается равным 1. Для водоемов приближительно квадратной или квадратной формы величина \(\beta \) определяется в зависимости от размеров площади водной поверхности по таблице I.4.1.

<table>
<thead>
<tr>
<th>Площадь водоема (км²)</th>
<th>0,01</th>
<th>0,05</th>
<th>0,1</th>
<th>0,5</th>
<th>1,0</th>
<th>2,0</th>
<th>5,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Поправочный коэффициент (\beta)</td>
<td>1,03</td>
<td>1,08</td>
<td>1,11</td>
<td>1,18</td>
<td>1,21</td>
<td>1,23</td>
<td>1,26</td>
</tr>
</tbody>
</table>

Для водоемов неправильной формы (вытянутых, с островами и бухтами) площадь зеркала принимается равной кругу с диаметром, равным среднему расстоянию \(l \), полученному как средневзвешенная с учетом повторяемости направления ветра (%) по восьми румбам. Взвешенное расстояние можно определить по уравнению:

\[
T = \frac{1}{100} \sum_{i=1}^{8} N_i \frac{l_i}{N_i},
\]

(4.18)

где \(N_i \) — повторяемость направления ветра по каждому из восьми румбов, %; коэффициент \(\gamma \) можно определить, пользуясь рисунком I.4.6.

Другим методом является введение поправки в данные испарителя, учитывающей потерю или поступление тепла через стенки и дно испарителя. Примером такого подхода является оценка испарения по данным испарителя класса А. Во влажном климате или во влажные сезоны температура воды в испарителе выше температуры воздуха, и коэффициент испарителя может быть 0,80 и выше. В засушливые сезоны в аридных районах температура воды в испарителе ниже температуры воздуха, поэтому коэффициент может быть 0,60 и ниже. При равенстве температур воды и воздуха коэффициент принимается равным 0,70. Зависимости для оценки испарения с озера по данным испарителя класса А с учетом поправки на потерю или поступление тепла показаны на рисунках I.4.7 и I.4.8. Поскольку скорость ветра значительно меняется с высотой, установка испарителей на стандартной высоте является необходимым требованием.

Чтобы получить величины испарения с озера за короткие интервалы времени методом испарителей, необходимо также оценить адвекцию тепла и изменение запаса тепла, как это указано в пункте 4.2.3. Желательно размещать испарители вблизи озера или водохранилища, чтобы постоянно иметь источник альтернативных данных и для проверки расчетов, выполненных по методу теплового баланса или аэродинамическим методам.

4.2.7 Эмпирические формулы

Несмотря на то что методы теплового баланса и массообмен теоретически обоснованы, для их использования необходимы данные, которые не всегда доступны. Более того, во многих случаях экономическая составляющая сбора таких данных с использованием приборов наблюдения за параметрами озера

Несколько из наиболее распространенных формул, используемых для оценки испарения с поверхности озер, приведены ниже:

Формула Пенмана, Соединенное Королевство Великобритании — маленький водоем (Penman, 1948):

\[
E(\text{см∙сут}^{-1}) = 0,89 \left(1 + 0,15U^2\right) (e_s - e_a),
\]
(4.19)
где \(U^2\) — скорость ветра на высоте 2 м над поверхностью воды; \(e_s\) — упругость насыщенного пара при данной температуре поверхности воды; \(e_a\) — давление водяного пара на указанной высоте.

Формула Марсиано и Харбека, США (Marciano and Harbeck, 1954):

\[
E(\text{см∙сут}^{-1}) = 0,0918U^8(e_s - e_a),
\]
(4.20)
\[
E(\text{см∙сут}^{-1})^{-1} = 0,1156U^4(e_s - e_a),
\]
(4.21)

Формула Кузьмина, СССР (Kuzmin, 1957) — водохранилища с площадью поверхности >20–100 м:

\[
E(\text{см∙мес}^{-1}) = 15,24 (1 + 0,13U)(e_s - e_a),
\]
(4.22)

Формула Геологической службы США, формула Бюро рекламаций (USGS, 1977):

\[
E(\text{см∙год}^{-1}) = 4,57T + 43,3,
\]
(4.23)
где \(T\) — среднегодовая температура в °C.

Рисунок I.4.7. Доля аддективного тепла в испарителе класса А, расходуемого на испарение
Формула Шахтина Мамбуба, Египет (Mutreja, 1986):

\[E(\text{см-сут}^{-1}) = 0.35(e_s - e_a)(1 - 0.15U^2) \]

(4.24)

где \(e_s \) — упругость насыщенного пара при температуре поверхности воды (см∙рт. ст. \(^{-1}\)) и \(e_a \) — действительное давление водяного пара (см ∙рт. ст. \(^{-1}\)).

В перечисленных уравнениях, если это не указано специально, скорость ветра \(U \) измеряется в км∙ч\(^{-1}\), а давление водяного пара — в см ртутного столба. Индексы у членов уравнений обозначают высоту в метрах, на которой проводятся измерения. Также за давление водяного пара \(e \) часто принимают давление насыщенного пара при средней температуре воздуха за период измерений.

Для использования этих уравнений необходимо знать температуру поверхности водной массы, которую очень сложно измерить. Если ее заменить на среднюю температуру воздуха, то влияние адvectionной энергии, передаваемой озеру в процессе испарения, уравнением не отражается. Это может стать причиной значительной ошибки при расчете испарения, поскольку небольшие погрешности при измерении температуры вызывают серьезные ошибки в вычислениях. Более того, измерения скорости ветра и давления водяного пара должны производиться на высоте, указанной в используемом уравнении. Обычно сложно вносить коррективы в данные, собранные на разных высотах, поскольку в настоящее время не известны ни точные законы ветра, ни законы, определяющие изменение влажности с высотой.

Главным преимуществом для использования этих эмпирических формул является простота их использования при работе с доступными стандартными метеорологическими данными. Тем не менее, необходимо точно понимать ограничения таких эмпирических формул.
ГЛАВА 4. ИСПАРЕНИЕ, СУММАРНОЕ ИСПАРЕНИЕ И ВЛАЖНОСТЬ ПОЧВЫ

4.3 СУММАРНОЕ ИСПАРЕНИЕ С ВОДОСБОРНЫХ БАССЕЙНОВ [ГОСМ 150]

4.3.1 Общие положения

Под суммарным испарением (эвапотранспирацией) понимается испарение с естественных поверхностей, при этом источником воды может быть почва, растения или одновременно и то, и другое. Что касается посевных площадей, то водопотребление означает общее испарение с площади плюс от воды, используемой тканями растений, следовательно, оно означает то же, что и суммарное испарение. Определение испарения и транспирации как отдельных понятий для водосборного бассейна не заслуживает доверия. Более того, их отдельная оценка для большинства исследований не требуется.

Суммарное испарение представляет собой один из самых популярных объектов исследования гидрологии и ирригации. Для оценки суммарного испарения было разработано большое количество методов. Они делятся на категории: а) методы водного баланса, такие как эвапотранспирометр, гидравлический баланс на полевых участках, истощение запасов почвенной влаги; б) метод энергетического баланса; в) методы переноса массы такие, как функция скорости ветра, вихревой поток, использование экранирования; г) совмещение метода энергетического баланса и метода переноса массы, например метод Penman; д) методы прогнозирования, например эмпирические уравнения и индексы, применяемые в отношении данных наблюдений по испарителям; е) методы для отдельных видов посевов. Все они описаны в National Handbook of Recommended Methods for Water Data Acquisition (Национальное наставление по рекомендуемым методам получения гидрологических данных)(USGS, 1977).

В контексте суммарного испарения Torritteit и Holzman (Thornthwaite and Holzman, 1941) ввели новый термин «потенциальное суммарное испарение» для обозначения такого суммарного испарения, которое возникает, когда почва содержит достаточное количество влаги в любое время, то есть, при котором влажность не является ограничивающим фактором в процессе суммарного испарения. Потенциальное суммарное испарение оценивают с помощью методов прогнозирования. Большинство других методов направлено на получение оценки фактического суммарного испарения при условии наличия достаточного количества воды в любое время. Фактическое суммарное испарение рассчитывается из потенциального суммарного испарения при помощи использования простой функции влажности почвы $f(\phi)$ (Saxton and others, 1986):

$$\lambda E_{actual} = f(\phi) \cdot \lambda E,$$ \hspace{1cm} (4.25)

где λE_{actual} — фактическое суммарное испарение, и функция влажности почвы представляет собой безразмерную величину, которую оценивают с помощью простой линейной модели. Функция влажности почвы определяется по следующему уравнению:

$$f(\phi) = M/\text{Полевая влагоемкость},$$ \hspace{1cm} (4.26)

4.3.2 Метод водного баланса

Если осадки P, речной сток Q, глубокое просачивание Q_{ss} и изменение влагозапасов ΔS можно измерить и оценить, то для получения оценки суммарного испарения ET можно использовать метод водного баланса. Уравнение водного баланса имеет вид:

$$ET = P – Q – Q_{ss} \pm \Delta S.$$ \hspace{1cm} (4.27)

Годовое суммарное испарение с бассейна за гидрологический год можно вычислить как разницу между осадками и стоком, если с помощью гидрогеологических исследований установлено, что глубинное просачивание незначительно. Дата, выбранная в качестве начала и конца гидрологического года, должна относиться к засушливому сезону, когда влагозапасы относительно невелики и их изменениями из года в год можно пренебречь.

Если требуется оценить суммарное испарение за более короткий период, например за неделю или месяц, необходимо измерить запасы воды в почве и речном русле. Это возможно только для малых водосборов и, поэтому, применение метода водного баланса для определения суммарного испарения за такие короткие периоды, как правило, ограниченно экспериментальными площадками или водосборами размером в несколько акров.

При оценке среднегодового суммарного испарения изменения запасов влаги обычно не учитываются, и оно рассчитывается как разница между среднегодовыми осадками и среднегодовыми стоком.

Измерения необходимых для использования этого уравнения величин проводятся традиционно. Количественно осадки, выпадающие на поверхность всего
Методы оценки суммарного испарения, которые используются для получения надежных данных, основаны на анализе различных факторов. Основными из них являются радиационный баланс и потоки тепла в почве, а также изменения оценки суммарного испарения, достигающиеся применением методов, основанных на радиационном балансе и потоках прямой радиации.

4.3.3 Метод энергетического баланса

Этот метод (WMO, 1966) можно применять для получения оценок суммарного испарения, когда радиационный баланс и поток тепла в почву достаточны для применения основных моделей энергетического баланса. Модель энергетического баланса интегрирована в течение 24 часов, таким образом она позволяет получить результаты для периода, для которого рассчитывается суммарное испарение.

Изменение влагозапасов равно среднему изменению уровня воды, умноженному на удельную водоотдачу и площадь водосбора или площадки. Распределение потоков влаги от уровня насыщения до уровня грунтовых вод может быть измерено путем измерения почвенной влаги в скважинах. Высоту уровня грунтовых вод можно определить путем измерения расстояния от заданной отметки до поверхности воды в скважинах в конце каждого периода, для которого рассчитывается суммарное испарение.

Применение этого метода (WMO, 1966) для оценки суммарного испарения затруднительно из-за ограниченных пространственных и временных областей применения. Вместе с тем, он дает реальные оценки дневного суммарного испарения ET (Brunel, 1989; Nieuwenhuis and others, 1985; Rambal and others, 1985; Thunnissen and Nieuwenhuis, 1990; Riou and others, 1988). Необходимо учитывать, что эти оценки не являются точными и зависят от специфики условий, в которых они были получены.

По сведениям ВМО, Германия использует данные НУОА УРОВР и другие данные для оценки суммарного испарения в мелкомасштабных сельскохозяйственных областях. Эти данные включают в себя данные о растительном покрове, градиентах температуры, связанной с почвой, потоке прямой радиации и освещенностью солнечного излучения. Экстраполяция результатов модели также должна быть проверена (WMO, 1992a).

4.3.4 Аэродинамический метод

Применение этого метода (WMO, 1966) для оценки суммарного испарения затруднительно из-за отсутствия надежных методов определения коэффициента...
турбулентного обмена (раздел 4.2). Поэтому этот метод используется редко, только для приближенной оценки испарения.

В некоторых странах суммарное испарение вычисляется эмпирическими методами — по методу Пенмана и по формуле Торнвейта. Метод Пенмана применяется в условиях достаточного увлажнения, а формула Торнвейта (Thornthwaite and Holzman, 1941) — в регионах с климатическими условиями, подобными средних широт Атлантического побережья Соединенных Штатов Америки, для которых эта формула была получена.

В Содружестве Независимых Государств для оценки суммарного испарения применяется метод Константинова (Konstantinov, 1966), основанный на наблюдениях за температурой и влажностью воздуха в психрометрической будке на высоте двух метров от земли. Этот метод применим, главным образом, для расчета средних многолетних значений месячного, сезонного или годового суммарного испарения.

4.3.5 Метод Пенmana–Монтейта

Используемое в этом методе уравнение 4.14 представляет собой комбинацию уравнений энергетического баланса на поверхности суши и уравнения переноса воды между поверхностью суши и атмосферой. В методе Пенмана–Монтейта (Monteith, 1965) используется аэродинамическое и поверхностное сопротивления. Первое характеризует влияние шероховатости поверхности суши на перенос тепла и массы, второе — сопротивление потоку водяного пара между покровом и реперной высотой над покровом. По верхностное сопротивление для водяных поверхностей равно нулю. При наличии растительности поверхностное сопротивление представляет собой биологический контроль транспирации и в значительной степени регулируется устьичным сопротивлением. Для высыхающих почв поверхностное сопротивление зависит от наличия почвенной влаги. Этот метод может быть использован применительно к часовым и суточным интервалам времени. Однако его использование ограничивается, поскольку он требует наличия подмодели для оценки поверхностного сопротивления.

Модель Пенмана–Монтейта выражается уравнением:

\[\lambda E = (\Delta \Delta + C_p D / r_{aw}) / (\Delta + \gamma (r_{cs} / r_{aw})), \]

(4.29)

где \(r_{aw} \) — аэродинамическое сопротивление на растительном покрове и \(r_{cs} \) — устьичное сопротивление растительного покрова. Для модели Шатлворт-Уоллас (Shuttleworth and Wallace, 1985), \(\lambda E \) разделено на испарение с почвы (\(\lambda E_s \)) и транспирацию с растительного покрова (\(\lambda E_i \), которые выведены из уравнений Пенмана–Монтейта:

\[\lambda E_s = (\Delta \Delta + p_c D / r_{aw}) / (\Delta + \gamma (l + r_{cs} / r_{aw})), \]

(4.30)

\[\lambda E_i = (\Delta \Delta + A_i D / r_{aw}) / (\Delta + \gamma (l + r_{cs} / r_{aw})), \]

(4.31)

где \(A_i \) — доступная энергия почвы; \(D \) — дефицит давления водяного пара в растительном покрове; \(r_{aw} \) — аэродинамическое сопротивление между подстилающей поверхностью и высотой крон; \(r_{cs} \) — сопротивление растительности по гранничному слою; \(r_{aw} \) — сопротивление почвы. Аэродинамическое сопротивление на растительном покрове \((r_{cs}) \) и аэродинамическое сопротивление между подстилающей поверхностью и высотой крон \((r_{aw}) \) являются функциями индекса листовой поверхности, постоянной времени затухания турбулентной температуропроводности, параметра протяженности шероховатости растительного покрова (являющегося функцией высоты растительности), перемещения нулевой плоскости (функции высоты растительности), реперной высоты над покровом, на которой проводится метеорологическое измерение, скорости ветра, постоянной Кармана и параметра протяженности шероховатости подстилающей поверхности. \(D \) — это электрический аналог для разниц температур и давлений водяного пара между покровом и реперной высотой над покровом, где измеряются потоки, идущие от растительности, полученный из закона Ома. \(D \) — это функция измеренного дефицита давления водяного пара на реперной высоте \(D \):

\[D = D + (\Delta \Delta - r_{aw} \lambda E_i (\Delta + \gamma)) / p c_p \]

(4.32)

и, следовательно, в приведенной комбинации уравнения \(D \) можно заменить на \(D \). Общее испарение с посевной площади, \(\lambda E \), для модели Шатлворт–Уоллас — это комбинация уравнений Пенмана–Монтейта, где \(D \) заменено на \(D \):

\[\lambda E = C_p P M_s + C_s P M_s \]

(4.33)

где \(PM_s \) описывает испарение с закрытого покрова, а \(PM_s \) — с голой подложки. Новые уравнения Пенмана–Монтейта — имеют вид:

\[P M_s = \left(\Delta \Delta + (p p r D - \Delta r_{aw} A_i) / (r_{aw} + r_{aw}) \right) / (\Delta + \gamma (1 + r_{cs} / (r_{aw} + r_{aw}))) \]

(4.34)

\[P M_s = \left(\Delta \Delta + (p p r D - \Delta r_{aw} A_i) / (r_{aw} + r_{aw}) \right) / (\Delta + \gamma (1 + r_{cs} / (r_{aw} + r_{aw}))) \]

(4.35)

Коэффициенты \(C_i \) и \(C_s \) представляют собой сочетание уравнений, выражающих сопротивление:

\[C_i = 1 / (l + R R_s / (r_{cs} / r_{aw})), \]

(4.36)
РУКОВОДСТВО ПО ГИДРОЛОГИЧЕСКОЙ ПРАКТИКЕ

4.3.6 Метод Простли–Тейлора (радиационный метод)

Метод Простли и Тейлора (Priestley and Taylor, 1972) основан на том аргументе, что для больших увлажненных территорий радиационная составляющая испарения должна преобладать над адвективной. Если при контакте с влажной поверхностью атмосфера остается насыщенной, перенос потока скрытого тепла (испарение) можно рассчитать по уравнению:

\[\lambda E = \left(\frac{Q^*}{\epsilon} \right) (Q^* - G) , \]

где \(Q^* \) — фактическая прямая радиация; \(G \) — поток тепла в почве; \(\epsilon = s \lambda c_p \) при \(s \), равном наклону кривой насыщения удельной влажности; \(\lambda \) — скрытая теплота испарения; \(c_p \) — теплоемкость воды.

Для равновесного испарения была предложена формула:

\[\lambda E = \alpha \left(\frac{Q^*}{\epsilon} \right) (Q^* - G) , \]

где \(\alpha = 1,26 \) — эмпирическая константа. Это выражение используется для оценки потенциального испарения при отсутствии местной адвекции. Оно также дает хорошие результаты при определении испарения с хорошо увлажненных территорий небольших размеров без влаголюбивой растительности.

4.3.7 Дополнительный метод

Дополнительный метод оценки испарения, впервые предложенный Бушем (Bouchet, 1963), находит все более широкое применение для больших территорий, так как основан на использовании, главным образом, стандартных климатических данных.

Согласно этому методу, потенциальное испарение является в равной степени как следствием фактического испарения, так и его причиной. Тепло и влага, выделяемые поверхностью, оказывают влияние на температуру и влажность воздуха над ней. Было предложено использовать увеличение потенциального испарения, наблюдающегося при иссушении территории, в качестве меры интенсивности фактического испарения.

Если фактическое испарение \(E \) становится ниже потенциального \(E_{po} \) для обширного увлажненного региона, то количество дополнительной энергии \(Q \) можно оценить по формуле:

\[\lambda E_{po} - \lambda E = Q . \]

4.3.8 Метод, учитывающий коэффициент культур и эталонную эвапотранспирацию

В 1998 г. в докладе под названием *Crop evapotranspiration — Guidelines for computing crop water requirements* (Суправатное испарение с сельскохозяйственных культур — Руководство по расчету потребностей сельскохозяйственных культур в воде) (доклад ФАО-56) был рекомендован новый стандарт для эталонной эвапотранспирации с сельскохозяйственных культур в воде (доклад ФАО-56). Был рекомендован новый стандарт для эталонной эвапотранспирации с сельскохозяйственных культур с использованием методов Бланея–Кридла, метода Пенмана, метода радиации и водных испарителей. Согласно методу ФАО-56 (FAO, 1998; Allen, 2000) для расчета потенциального суммарного испарения с сельскохозяйственных культур \((ET)_p \) сначала вычисляется этalonная эвапотранспирация для травяного покрова \((ET)_o^p \) или полей люцерны, а потом полученное значение умножается на эмпирический коэффициент культуры \(K_c \). Расчеты потенциального суммарного испарения \(ET_o^p \), в которых используется двойной коэффициент культуры, содержат в себе отдельные расчеты транспирации и испарения после осадков и ирригации.
С помощью метода ФАО-56 Пенмана–Монтейта вычисляется эталонная эвapotранспирация на основе прямой радиации на поверхности сельскохозяйственных культур, теплового потока почвы, температуры воздуха, скорости ветра и дефицита давления насыщенного пара. Коэффициент культуры определяется с помощью коэффициента снижения стресса \(K_s \), базового коэффициента культуры \(K_0 \) и коэффициента испарения почвенной влаги \(K_e \). Кривая \(K_{cr} \) разделена на четыре стадии развития: начальная стадия, стадия развития, середина сезона и конец сезона. Оценки полевой влагоемкости и точки завядания определяют запас почвенной влаги для суммарного испарения. Нисходящий дренаж поверхностного слоя почвы учитывается, однако при этом не рассматривается восходящий поток с насыщенного водного зеркала, что возможно вызвало преувеличенную оценку водного стресса между ирригациями. Водный стресс в методе ФАО-56 учитывается посредством уменьшения значения \(K_e \).

4.3.9 Широкоапертурный сцинтилляционный счетчик

Оценка действительного суммарного испарения с помощью метода энергетического баланса требует знаний о явлном потоке тепла. По теории подобия Монина-Обухова явлный поток тепла \(H \) связан со структурным параметром температуры \(C_f \). Широкоапертурный сцинтилляционный счетчик представляет собой инструмент для сбора усредненных по пути значений \(C_f \) (de Bruin and others, 1995). Сцинтилляционный счетчик направляет источник света между излучателем и приемником, и приемник записывает образовавшую пленку, однако, повреждают ветер и пьль, и ее жесткая структура не позволяет ей восстановиться после повреждений. Для этой цели могут быть использованы химические вещества, например гексадеканол и октадеканол (Gunaji, 1965).

Исследования Бюро рекламаций показали, что уменьшить испарение на 64 % можно с помощью гексадеканоловой пленки в испарителе диаметром 1,22 м при контролируемых условиях. Фактическое сокращение испарения с больших водоемов, конечно, будет значительно меньше этого из-за проблем с защитой пленок от воздействия ветра и волн. Сокращение испарения на 22–35 % наблюдалось на маленьких озерах площадью примерно 100 га, на больших озерах отмечалось сокращение испарения на 9–14 % (La Mer, 1963).

В Австралии сокращение испарения на 30–50 % наблюдалось на средних по размеру озерах (приблизительно 100 га). Несмотря на то что использование мономолекулярной пленки пока не пришло на этапе исследования, представляется, что с помощью этого метода можно в некоторой степени контролировать процесс испарения.

4.4 УМЕНЬШЕНИЕ ИСПАРЕНИЯ

4.4.1 Со свободных поверхностей

Потери на испарение с полностью открытой водной поверхности являются функцией скорости и дефицита насыщения воздуха, дующего над водной поверхностью, температуры воды. Потери на испарение можно удержать на минимальном уровне при помощи:

- a) раскрытия наименьшей возможной площади поверхности воды. Это, в свою очередь, означает, что водотоки и водохранилища должны быть глубокими, а не широкими;
- b) покрытия поверхности воды;
- c) контроля роста водной растительности;
- d) создания вокруг водохранилищ лесонасаждений, которые защищают его от ветра. Однако этот метод полезен при определенных условиях для больших водоемов;
- e) хранения воды в подземных хранилищах вместо создания поверхностных резервуаров. При применении этого способа возникает ряд физических и законодательных проблем, связанных с защитой от нежелательного отступления воды;
- f) более широкого использования подземных вод;
- g) интегрированного управления водохранилищами;
- h) обработки водоема химическими замедлителями испарения.

Первые семь из упомянутых выше методов являются прямыми и леткими для понимания. А вот последний требует пояснений. Данный метод заключается в помещении специальной жидкости на поверхность воды для образования мономолекулярной пленки. Образовавшуюся пленку, однако, повреждают ветер и пьль, и ее жесткая структура не позволяет ей восстановиться после повреждений. Для этой цели могут быть использованы химические вещества, например гексадеканол и октадеканол (Gunaji, 1965).
РУКОВОДСТВО ПО ГИДРОЛОГИЧЕСКОЙ ПРАКТИКЕ

I.4-22

a) пылевая мульча: это старая практика обработки почвы с целью удержания разрыхленной почвы на поверхности. Этот метод основан на теории, что разрыхление поверхности способствует быстрому высыханию и уменьшает контакты между частицами почвы. Сухая почва будет действовать как одеяло, подавляя испарение. Уменьшение точек соприкосновения частиц сократит капиллярный подъем.

Было обнаружено, что пашня может быть необходи́ма только для того, чтобы избавиться от сорняков и поддержать почву в необходимых для поглощения воды условиях, и она бесполезна как средство преодоления засухи или увеличения плодородия. Эксперименты также показали, что мульчирование не только уменьшает коли́чество воды в почве, но и вызывает большую по́терю влаги на толстых, нетронутых почвах. При испытаниях на водоемах и в поле было обнару́жено, что мульчирование культивированием с недельным интервалом не помогает сохранить почвенную влажность, но тонкий поверхностный слой, благодаря быстрому высушиванию, действует как замедлитель дальнейшей потери воды. Со времени этих ранних исследований уже опублико́ваны результаты многих других. На многих сельскохозяйственных экспериментальных станциях занимались изучением этой проблемы и пришли к похожим выводам. Различные экспе́рименты также показали, что почвенный мульча может сокращать влажность почвы только тогда, когда расположенный высоко или постоянное водное зеркало находится внутри капиллярного подъема поверхностности;

b) бумажная мульча: покрытие почвы бумагой для сокращения испарения широко использовалось в 1920-е гг., но сейчас это делается уже реже из-за того, что эффект бумажной мульчи распространяется на ограниченную поверхность почвы из-за конденсации на нижней стороне бумаги;

c) химическое изменение: эксперименты в начале 1950-х гг. показывали, что химическое воздействие на характеристики влажности почвы могут умень́шить испарение. Добавление в почву полиэлектролитов замедляет интенсивность испарения и увеличивает количество доступной растениям воды;

d) галечная мульча: этот метод использовался в Китае для частичного контроля за испарением в некоторых сухих регионах.

4.5 ИЗМЕРЕНИЕ ВЛАЖНОСТИ ПОЧВЫ [ГОСТ E56]

4.5.1 Общие положения

Извлечение влажности — это вода, удерживающая в почве силами молекулярного притяжения. Вода удержи́вается в почве благодаря силам сцепления (адгезионной и когезионной). Они действуют благодаря противоведу́ствие силы тяжести, с одной стороны, и испарения и транспирации — с другой. Следовательно, коли́чество влаги в почве в данный момент времени опре́деляется силой и продолжительностью действия сил на влагу и количеством изначально содержа́щейся влаги.

Естественные источники воды в почве — такие, как дождь или таяние снега, как правило, значительно уменьшаются во время засухи. На содержание воды в почве влияют форма склона, градиент и коэффи́циент шероховатости почвы, поскольку поверхностные или подповерхностные потоки могут принести воду в почву из прилегающих к склону участков, в то время как поверхностный сток может ее унести. Испарение, суммарное испарение и глубокое просачивание за пределы корневой глубины также исто́щают запасы влаги в почве.

Следовательно, содержание воды в почве должно быть определено количественно для точного обозначе́ния объема воды в почве в любой момент времени. При насыщении полезная влага́ может свободно просачиваться через почвенный профиль. Эта излишняя вода назы́вается гравитационной водой и может просачиваться ниже корневой глубины некоторых растений. Важно дать определения некоторым понятиям, связанным с влажностью почвы. Полевая влагоемкость — это количество воды, оставшееся после испарения из почвы. Количество воды, которое может быть использовано растением, зависит от влажности почвы. Количество воды, доступной растениям, зависит от влажности почвы, доступной для растений, хотя растения могут добывать гравитационную воду, пока она доступна.

Содержание влаги в почве — это ключевой компо́нент в составлении графика орошения. Корневая зона служит резервуаром для влажности почвы. Во время сезона дождей влажность почвы высока, но во время сбора урожая почвенные запасы воды полностью
Глава 4. Испарение, суммарное испарение и влажность почвы

Истощены. Следовательно, измерение влажности почвы является важным фактором в предотвращении избыточного орошения, приводящего к напрасной трате воды и вымыванию удобрений, или недостаточного орошения, в результате которого появляется дефицит воды.

Влажность почвы измеряется двумя резко отличающимися друг от друга методами: количественным и качественным, который показывает, насколько крепко частицы почвы удерживают влагу.

4.5.2 Количественные методы

4.5.2.1 Гравиметрический метод

Гравиметрический метод является одним из прямых методов измерения влажности почвы. Он заключается во взятии почвенной пробы (обычно 60 см³), взвешивании ее до и после высушивания и подсчете содержащейся в ней влаги. Почвенная пробы считается высушенной, если ее вес остается постоянным при температуре 105 °C. Для этого метода были разработаны различные типы оборудования для взятия проб, сконструированы специальные сушильные шкафы и весы.

Гравиметрический метод является самым точным методом измерения влажности почвы и служит в качестве стандарта для тарирования приборов, применяемых во всех других методах. Однако он не может быть применен для получения непрерывных данных о влажности почвы в одной и той же точке в связи с необходимостью удаления пробы из почвы для ее лабораторного анализа.

Отбор проб

Методика отбора проб для гравиметрического метода зависит от того, каким способом будет определяться влажность — определением сухой массы пробы или ее объема. При определении сухой массы проба может перемешиваться, а при определении объема — нет. Процесс отбора проб сопряжен с трудностями, особенно если почва очень сухая, либо очень влажная, или если она содержит камни, скальные обломки и другие включения, мешающие работе приборов для взятия проб.

Методика отбора проб и соответствующее оборудование должны быть таковы, чтобы при взятии проб и их транспортировке можно было избежать как потеря влаги из проб, так и поступления ее, а также повреждения проб или изменения их свойств. При взятии проб из сухого слоя почвы, расположенного под влажным слоем, необходимо сохранять оборудование, по возможности, сухим и не допускать стекания воды по скважине из влажного слоя в сухой. Если почва содержит гравитационную воду, то измеренное содержание влаги в почве может оказаться меньше действительного содержания из-за того, что некоторая часть влаги стечет по каплям при извлечении пробы из почвы, или она может быть отжата в результате сжатия пробы при ее извлечении.

Когда встречаются сухие твердые отложения тяжелого механического состава, то бывает трудно пользоваться колонковым буром или вращать почвенный бур. При взятии проб сухих отложений легкого механического состава, проба может высокользть из конца колонковой трубы или из бура. Очень трудно брать пробы из каменистых почв, особенно объемные, так как при этом возникает опасность повреждения камнями режущей части инструмента, а также в связи с тем, что репрезентативная проба должна быть большого объема. Представляют затруднения и почвы, в которых встречается много корневищ и органического вещества.

При гравиметрическом методе измерения влажности почвы, размеры отбираемого для пробы образца пропорциональны размерам и содержанию в грунте гравия: чем крупнее гравий, тем большего размера следует брать пробу. Влажность выражается в процентах по отношению к массе (весу) пробы. При умножении на объемную плотность, влажность может быть выражена в процентах по отношению к объему.

Очень важно, чтобы все операции по отбору проб для определения влажности почвы — помещение проб в боксы, взвешивание влажных проб — проводились как можно быстрее во избежание потерь влаги. Можно избежать многих трудностей при использовании оборудования для взятия проб, если сортировать его в чистоте, удаляя с него влагу и ржавчину.

Описание оборудования для взятия пробы

Ручной бур (рисунок 4.9)

Самым простым инструментом для взятия проб на влажность почвы является ручной бур. С помощью ручных буров с удлинителями из алюминиевых труб брались пробы с глубины до 17 м. Одним из наиболее распространенных типов ручных буров является бур, состоящий из цилиндра диаметром 76 мм и длиной 230 мм, снабженного в верхнем конце удлинительной трубой длиной 140 см, а в нижнем — двумя изогнутыми резцами. Поскольку приемная часть бура представляет собой массивный цилиндр, на пробу не могут воздействовать стенки скважины. Таким образом, с помощью этого оборудования можно получить хорошую, репрезентативную пробу, но с нарушенной структурой. Для облегчения работы на глубинах,
превышающих 150 см, по мере надобности, наращиваются удлинительные секции из 19-миллиметровых алюминиевых труб длиной 90 см. (рисунок I.4.10).

Для получения пробы грунта с помощью ручного бура, его вращают рукояткой и углубляют в грунт, из которого надо взять пробу. Обычно цилиндр бура заполняется грунтом после проходки примерно 80-миллиметрового слоя. Тогда бур извлекают на поверхность и простукивают цилиндр резиновым молотком для того, чтобы извлечь из него пробу.

Трубчатые или колонковые буры (рисунок I.4.9)

Некоторые типы почвенных, колонковых и ударных буров имеют то преимущество, что при взятии почвенных проб на влажность можно получать объемные пробы для расчета объемного содержания влаги. Колонковые буры дают незагрязненные пробы при условии содержания оборудования в чистоте. С оборудованием необходимо удалять грязь, ржавчину и влагу, и никогда не следует применять смазку. При глубоком бурении обычно рекомендуется бригада из двух человек, при этом глубина взятия проб может достигать 20 м (рисунок I.4.11). Рекомендуется, чтобы объем пробы был, по меньшей мере, 100 см³.

Открытый ударный бур для взятия проб с больших глубин состоит из пробоотборника с внутренним диаметром 50 мм и длиной 100 мм и удлинительных труб диаметром 25 мм и длиной 150 см. Для удержания «ненарушенных» проб применяются латунные цилиндрические гильзы длиной 50 мм. Пробы извлекаются из пробоотборника путем выталкивания их поршнем. Для удлинения бура служит легкая буровая штанга или 15-миллиметровая труба.

Простой и экономичный бур для взятия объемных проб с небольших глубин состоит из тонкостенной латунной трубки диаметром 50 мм и длиной 150 мм, смонтированной на конце трубки длиной 90 см и диаметром 19 мм, снабженной T-образной рукояткой. Пробы берут, вдавливая бур в почву с помощью рукоятки, затем извлекают пробу из пробоотборника, выталкивая ее поршнем. Зная внутренний диаметр и площадь пробоотборника, можно легко получить объемные пробы, отрезая куски колонки грунта требуемой длины по мере извлечения колонки из пробоотборника.

Лабораторные исследования

Сначала отобранная влажная проба вз вещивается вместе с контейнером для ее транспортировки. Затем контейнер открывается и помещается в сушильный шкаф, в котором поддерживается постоянная температура 105 ± 0,5 °C. Для проб, содержащих торф или существенное количество известняка, следует поддерживать температуру в сушильном шкафу 50 ± 0,5 °C, хотя при такой температуре потребуется больше времени на высушивание пробы.

После того как проба высушена, она вновь вз вещивается вместе с контейнером. Разница в весе сухой и влажной пробы является мерой ее влагосодержания. Для сушки можно использовать другие устройства, которые дают более быстрые результаты, чем обычный сушильный шкаф, например такие, как спиртовки, инфракрасные лампы или микроволновые печи.
Если в пробе содержится гравий или обломочный материал, вышеприведенную процедуру обработки можно изменить и определять вес или объем гравия и/или камней отдельно.

Достоинства и недостатки этого метода приведены ниже.

Достоинства: это относительно недорогой, простой и высокоточный метод.

Недостатки: это трудоемкий, затратный по времени и сложно выполнимый в скалистых почвах метод.

4.5.2.2 Метод рассеяния нейтронов [ГОСТ C58]

С помощью нейтронного метода определяется количество воды в единице объема почвы. Объем почвы, охватываемый измерениями при этом методе, имеет шарообразную форму с радиусом от 1 до 4 метров в зависимости от влажности почвы и интенсивности излучения нейтронов источником.

Этот метод основан на принципе измерения замедления нейтронов, излучаемых в почву источником быстрых нейтронов (Greacen, 1981). При столкновении нейтронов с атомами, обладающими небольшим атомным весом, усиливается потеря энергии, она пропорциональна числу таких атомов, имеющихся в почве. В результате этих столкновений быстрые нейтроны становятся медленными. Водород, являющийся главным химическим элементом с низким атомным весом, находящимся в почве, содержит в большом количестве в молекулах воды почвы. Число медленных нейтронов, обнаруженных счетной трубкой после испускания быстрых нейтронов радиоактивным источником, отмечается на пересчетном устройстве с помощью электроники.

Приборы

Типичный комплект оборудования состоит из переносной батареи или счетчика времени с пружинным заводом, отмечающим интервалы от 0,5 до 5 минут и весом около 16 кг, а также зонда для измерения влажности, имеющего источник быстрых нейтронов радиоактивностью 100 милликюри, излучаемых амрицием-241 и бериллием (с периодом полураспада 458 лет). Длина зонда составляет около 400 мм, диаметр около 40 мм и вес 20 кг вместе со свинцовым и парафиновым экранами диаметром 150 мм и длиной 100 мм (рисунок I.4.12). Эти зонды применялись при длине кабеля до 60 м.

Источник излучения и счетчик погружают в почву по скважине, крепленной алюминиевой трубой; отсчеты можно производить на любой глубине, но не слишком близко к поверхности. Внутренний диаметр трубы должен лишь ненамного превышать диаметр зонда. Трубу следует устанавливать, по возможности, выбирая бурением грунт внутри нее для обеспечения тесного соприкосновения наружной стороны трубы с почвой.

Устройства подобного типа разработаны также для измерений в поверхностном слое почвы. В этом

Рисунок I.4.11. Труба для взятия проб с гидравлическим приводом на базе небольшого грузовика. Труба с открытым верхом находится в рабочем положении. Гидравлические регуляторы расположены справа.
случае оборудование устанавливается на поверхности земли и показывает содержание почвенной влаги в полусферическом объеме радиусом от 15 до 40 см.

Обсадные трубы

Установка обсадных труб должна выполняться очень тщательно с тем, чтобы предотвратить сжатие почвы и обеспечить контакт с почвой с внешней стороны этих труб, т. е. во время их установки не должно обра- зовываться пустот с внешней стороны. Обсадные трубы могут устанавливаться:

a) путем помещения труб в предварительно пробуренные скважины такого же или немного меньшего диаметра (скважины можно пробурить при помощи ручного или моторизованного спирального бура);

b) путем забивания труб в почву молотком, с последующим удалением почвы из труб при помощи спирального бура.

Днище трубы должно быть запаяно, чтобы предотвратить инфильтрацию подземных вод. Верхний конец следует закрывать крышкой или специальной чашкой, если труба не используется.

Тарирование

Почвенный зонд тарируется с помощью гравиметрического метода определения влажности почвы (4.5.2.1), причем тарировка проводится на тех типах почв, на которых будут проводиться наблюдения, и в обсадной трубе такого же размера и типа, как та, которую будет опускаться зонд. Вокруг скважины для наблюдений необходимо взять столько проб почвы, чтобы можно было построить профиль распределения влажности почвы по глубине. Трудно осуществить надежное тарирование на разнородных почвах и при влажности почвы, быстро меняющейся с глубиной. Приблизительную тарировку можно выполнить и в лаборатории, используя контейнер, заполненный почвенно-мATERIALом. Существенное влияние на показания оказывают тип и размер крепления, а также способ установки обсадной трубы, поэтому при каждом изменении установки необходимо получать новую тарировочную кривую.

Измерения и их точность

В обсадных трубах не должно содержаться излишней влаги, в ином случае это приведет к ошибочным показаниям.

После погружения почвенного зонда на заданную глубину в обсадную трубу, снимается ряд отсчетов за определенный период времени. Среднее показание преобразуют в содержание влаги при помощи тарировочной кривой. Точность определения, главным образом, зависит от:

a) обоснованности тарировочной кривой;

b) количества отсчетов за период измерения.

Ошибочные отсчеты случайного характера могут иметь место из-за случайности процесса излучения и столкновения нейтронов. Ошибки хронометрирования можно свести к минимуму, используя стандартный, равный двум минутам, временной цикл для снятия показаний.

Обычная концентрация солей в почвенной влаге не оказывает существенного влияния на результаты, получаемые с помощью нейтронного метода, но концентрация, соответствующая солености морской воды, вызывает значительный эффект. Имеются данные, свидетельствующие о влиянии температуры. На отсчеты вблизи поверхности земли оказывает воздействие положение зонда по отношению к поверхности раздела воздух—почва. Близость к этой поверхности вызывает занижение показаний по сравнению с теми, которые имели бы место при той же влажности почвы на большей глубине.

При минимизации источников ошибок, точность конкретного измерения достигает от 0,5 до 1 %. При
поворотных измерениях, которые обычно выполняются при изучении водного баланса, изменения влажности почвы могут быть даже более точными, поскольку исключаются систематические ошибки.

Достоинства и недостатки этого метода, а также применимость инструментов для его использования приведены ниже (Prichard, 2003).

Достоинства: с помощью нейтронного зонда можно быстро, точно и многократно измерять содержание влаги в почве на некоторой глубине и в определенном месте.

Недостатки: использование радиоактивных материалов, требующих квалифицированного и хорошо обученного оператора, необходимость наличия для каждого участка дорогостоящего оборудования и проведения точного тарирования.

Легкодоступные инструменты: нейтронные влагомеры доступны в промышленном масштабе.

4.5.2.3 Диэлектрические методы [ГОСТ C60]

Методы диэлектрической постоянной стремятся измерить способность диэлектрика (почвы) передавать высокочастотные электромагнитные волны или импульсы. Получаемые значения отражают содержание влаги в почве (при помощи калибровки).

Применение этих инструментов обусловлено тем, что диэлектрическая постоянная сухой почвы составляет 2–5, а воды — 80, если измерения выполняются на частоте от 30 МГц до 1 ГГц.

Для измерения диэлектрической постоянной воды в почве и оценки объемного содержания воды в почве были разработаны два подхода:
a) рефлектометрия во временной области (TDR);
b) рефлектометрия в частотной области (FDR).

Ни TDR, ни FDR не используют радиоактивный источник, вследствие этого затраты на лицензирование, обучение и мониторинг снижаются по сравнению с методом, использующим нейтронный зонд.

Рефлектометрия во временной области

Устройство TDR производит высокочастотную поперечную волну, которая идет по прикрепленному к параллельному контактному датчику, вставленному в почву, проводу. Сигнал отражается от одного датчика к другому, затем возвращается к счетчику, который измеряет время между отправкой импульса и получением отраженной волны. Зная длину провода и длину волновода, можно вычислить скорость распространения волны. Чем выше скорость распространения волны, тем меньше диэлектрическая постоянная и, следовательно, тем меньше влажность почвы.

Как правило, волноводы представляют собой пару стержней из нержавеющей стали, которые вставлены в почву на глубину нескольких сантиметров. Волновод измеряет среднее объемное содержание влаги по длине волновода, если он откалиброван таким образом. Волноводы устанавливаются на глубине 45–60 см от поверхности. Пара стержней можно установить навсегда, чтобы измерять содержание влаги на разных глубинах. Если необходимы более глубокие измерения, то обычно выкапывается карьер, после чего в устойчивые борты карьера вставляется волновод. Нарушение почвы может менять движение воды и приводить к обезвоживанию, что приводит к ошибкам в данных.

Компоненты прибора TDR являются относительно дорогими. Тем не менее, если техника TDR правильно откалибрована и установлена, то ее точность очень высока. Поскольку поверхностные измерения можно провести легко и на нескольких участках, этот метод подходит и для сельскохозяйственных культур с поверхностной корневой системой.

Рефлектометрия в частотной области

В этом методе используются радиочастотные волны для измерения емкостного сопротивления почвы. Почка действует как диэлектрик, завершающий цикл обратной связи высокочастотного генератора на полупроводниковых приборах. Частоты отличаются друг от друга в зависимости от производителя инструментов, но, как правило, составляют 150 МГц. Емкостное сопротивление почвы связано с диэлектрической постоянной геометрией электрического поля, существующего вокруг электродов. Диэлектрическая постоянная в свою очередь связана с объемным содержанием влаги, как было описано в методе TDR. В методе FDR используются два различных инструмента — обсадная труба и ручной нажимной зонд.

Обсадная труба

Обсадная труба из поливинилхлорида похожа на трубу, которая используется в нейтронном зонде, и электроды опускаются в трубу, и измерения проводятся на разных глубинах. Необходимо убедиться в точной посадке стенок обсадной трубы в почву, потому что воздушные промежутки между ними влияют на проход сигнала в почве. Для подтверждения точности значений требуется калибровка для определения объемного содержания воды в почве (особенно...
для глинистых почв и почв с высокой объемной плотностью). При правильной калибровке и установке точность влагомера может быть высокой.

Этот метод обладает многими преимуществами нейтронного зонда, в том числе и высокой скоростью измерения в том же месте и на той же глубине в течение того же времени.

Другим вариантом использования этой технологии является использование стационарной установки, которая снимает показания с различных глубин. Они используются в сочетании с электронным оборудованием для получения частых наблюдений и передачи результатов в центральное устройство сбора данных.

Ручной нажимной зонд

Ручной нажимной зонд является другим видом устройства для измерения сопротивления, который позволяет быстро и легко получать околоповерхностные показания. Эти зонды позволяют проводить качественные измерения содержания влаги в почве по шкале от 1 до 100 с высоким показанием, обозначающим более высокое содержание влаги в почве. Трудно использовать эти зонды в более сухих почвах и почвах, содержащих камни или крепкий сланец. Более глубокие измерения можно провести с помощью почвенного бура, который позволяет получить доступ к более глубоким частям корнеобитаемой зоны. Данный зонд лучше всего использовать для сельскохозяйственных культур с поверхностной корневой системой.

Достоинства: оборудование TDR и FDR является относительно точным (±1–2 %); эти приборы позволяют осуществлять прямое считывание данных об объемном, доступном растениям процентном содержании влаги в почве или же непрерывное считывание, если используется регистрирующее устройство; им не требуется калибровка; они относительно устойчивы к воздействию солей в почве.

Недостатки: из-за стоимости приборов, эти методы дороже, чем другие. Отсутствие надежного контакта с почвой может влиять на считывания, а зубцы прибора могут быть повреждены в твердых и скалистых почвах. Метод TDR использует сложное электронное оборудование, и он наиболее дорогой, тогда как FDR более восприимчив к ошибкам, вызванным засоленностью почвы. Показания регистрирующих устройств представлены в виде графиков, которые требуют последующего объяснения.

4.5.2.4 Гамма-абсорбционный метод

Снижение интенсивности гамма-лучей, проходящих через почву, главным образом, зависит: от плотности почвы, от воды, которая в ней содержится и от коэффициентов ослабления излучения почвой и водой, которые являются постоянными. Этот метод заключается в одновременном погружении источника гамма-лучей (обычно цезий-137) и приемника гамма-лучей (цинтилляционный кристалл с фотоумножителем) в две параллельные обсадные трубы, установленные в почве. На любом уровне измерений сигнал может преобразовываться в плотность влажной почвы или, когда известен сухой объемный вес, в параметр, характеризующий объемное содержание влаги в почве.

Измерительное оборудование дает возможность получать профили плотности влажной почвы или объемного содержания влаги в почве на несколько десятков сантиметров при условии, что сухой объемный вес остается постоянным.

Преимущество этого метода заключается в высоком пространственном разрешении (он измеряет слон почвы толщиной от 20 до 50 мм, когда обсадные трубы установлены на расстоянии около трех метров). Однако эти измерения не предназначены для использования в воде вне почвы. Существенное изменение сухого объемного веса может привести к ошибкам в измерении влажности почвы.

Довольно сложное оборудование, которое включает два источника энергии с различной интенсивностью излучения гамма-лучей, дает возможность изучить изменения плотности и влажности почвы. Такое оборудование применяется, главным образом, в полевых, а в лабораторных условиях.

4.5.3 Качественные методы

4.5.3.1 Тензиометрический метод [ГОСТ С62]

Тензиометр состоит из пористой чашки, подводящей трубки и/или главной трубки, и датчика давления. Пористая чашка сделана из пористого твердого материала (обычно керамики). Поры стенок чашки малы настолько, чтобы предотвратить проникновение воздуха. Полугибкая подводящая трубка и/или жесткая
Глава 4. Испарение, суммарное испарение и влажность почвы

ГЛАВА 4. ИСПАРЕНИЕ, СУММАРНОЕ ИСПАРЕНИЕ И ВЛАЖНОСТЬ ПОЧВЫ

Тензиометры позволяют получить данные о потенциале почвенной влаги (компоненты давления). Для определения содержания влаги в почве с помощью тензиометра необходима тарировочная кривая, которая отражает связь между натяжением и содержанием влаги в почве, но в полевых условиях требуется использовать тарировочную кривую, полученную по данным гравиметрического метода (раздел 4.5.2.1). Но даже в этом случае важность почвы оценивается приблизительно, из-за существования гистерезиса между ветвями увлажнения и высыхания почвы яркой натяжности почвенной влаги. Метод измерения важности почвы с помощью тензиометров ограничивается диапазоном 0–0,8 бар (0–8 м отрицательного гидравлического напора). Поэтому он пригоден только для районов достаточного увлажнения.

Устройством измерения давления обычно является вакуумный манометр с трубкой Бурдона или ртутный манометр. К тензиометру может быть также подсоединен электрический преобразователь давления для сохранения непрерывной записи изменений натяжения. Поскольку система находится при частичном вакууме в полиэтиленовой пленке или тонкой бумаге, под давлением, которое оказывает влияние на давление почвы, давление вычитается из атмосферного давления плюс давление столба воды между датчиком давления и пористой чашкой. Таким образом, потенциал почвенной влаги на глубине чашки — это показания тензиометра плюс давление столба воды. Если давление вычисляется с точки зрения всасывания, то давление воды в трубке тензиометра плюс давление столба воды в трубке тензиометра плюс натяжение между ветвями увлажнения и высыхания.

Время реакции тензиометра гораздо меньше, чем если устройство измерения давления, у которого нет небольшой объем емкости, по сравнению с другими датчиками давления. Большие затраты могут быть сняты за счет использования только одного электрического преобразователя давления, подсоединенного к нескольким тензиометрам через сканирующее устройство. Другое решение заключается в использовании аппаратуры, которая ретранслирует давление в тензиометре методом игры. Эта игла делает специальную отметку на трубке тензиометра только непосредственно в момент измерения. Один игольчатый аппарат может использоваться для регистрации данных нескольких тензиометров, помещенных в почву. Однако в отличие от систем, описанных выше, эти типы тензиометров не могут применяться для записи изменений потенциала давления.

Тензиометры следует устанавливать, предварительно откачив воду. Затем возможно удалить воздух, оставшийся внутри системы, при помощи вакуумного насоса. Тензиометры обычно вставляются в почву вертикально, в заранее подготовленные углубления такого же диаметра, как пористая чашка. Центр пористой чашки помещается на глубину, на которой требуется измерить давление. На тензиометры оказывает влияние изменение температуры, которое вызывает термическое расширение или сжатие различных частей системы, и которое оказывает влияние на показания давления. В полевых условиях рекомендуется защищать от солнечной радиации тензиометры, которые находятся над поверхностью земли, для снижения влияния этого влияния. Таким же образом тензиометры, используемые зимой, должны быть защищены от возможного повреждения в результате замерзания трубы с водой и датчика давления. Необходимо периодически очищать тензиометры, удаляя из системы накапливающийся воздух.

Показания тензиометра указывают давление в по- ристой чашке минус разница давления, вызываемого столовом воды между датчиком давления и пористой чашкой. Таким образом, потенциал давления почвенной влаги определяется по данным гравиметрического метода (раздел 4.5.2.1). Но даже в этом случае влажность почвы оценивается приблизительно, из-за существования гистерезиса между ветвями увлажнения и высыхания почвы яркой натяжности почвенной влаги. Метод измерения важности почвы с помощью тензиометров ограничен диапазоном 0–0,8 бар (0–8 м отрицательного гидравлического напора). Поэтому он пригоден только для районов достаточного увлажнения.

Трудно определить точность измерения тензиометром потенциала давления почвенной влаги. На точность измерения оказывают влияние температура, точность датчика давления и объем воздуха внутри системы. Кроме того, время реакции тензиометра может вызывать ошибочные измерения при очень быстром изменении во времени потенциала почвенной влаги. В этом случае может быть достигнута равновесие между водой в почве и водой в тензиометре. Недавние исследования показали, что полупроницаемые пластиковые стержни (чашки) обеспечивают большие быструю реакцию, чем керамические (Klute, 1986).

Из всех приборов для измерения почвенной влаги, тензиометр отличается наибольшей простотой с точки зрения установки и снятия отсчетов. Однако
тензиометры не приспособлены для установки на глубину более трех метров. При нормальном атмосферном давлении этот метод ограничен в диапазоне потенциала давления ниже почти –85 кПа. Тензиометрам требуется частое обслуживание для получения надежных измерений в полевых условиях.

Достоинства: тензиометры не подвержены воздействию соли, растворенной в почвенной воде. Они измеряют натяженность почвенной влаги в диапазоне влажности с разумной точностью.

Недостатки: тензиометры работают в условиях между полным насыщением и около –85 кПа. Следовательно, они не подходят для измерений в сухих почвах.

4.5.3.2 Пористые блоки/блоки электрического сопротивления [ГОСТ C60]

Пористые блоки сделаны из гипса, гипсовостеклянного раствора, керамики, нейлона и стеклопластика. Их закапывают на глубину желаемого измерения. Через некоторое время между блоками и влагосодержанием окружающей почвы наступает равновесие. Таким образом, последующие измерения связаны с натяженностью почвенной влаги.

В случае с блоками электрического сопротивления, в блок с расширяющимся к поверхности кабелем помещены два электрода. Электрическое сопротивление измеряется между двумя электролами с помощью счетчика, соединенного с проводом. Более высокие показания сопротивления говорят о низком содержании влаги в блоке и высокой натяженности почвенной влаги.

Пористые блоки, как и тензиометры, требуют осторожной установки и хорошего контакта с почвой. Требования к обслуживанию невысокие и намного ниже, чем у тензиометров. Доказано, что гипсовые блоки разрушаются в солонцеватых почвах и сразу же растворяются, вызывая необходимость их замены. Почвы с высоким содержанием растворимых солей могут вызывать ошибки в измерениях, поскольку соли влияют на электропроводность и сопротивление почвы. Лучше всего гипсовые блоки подходят для тонкодисперсных почв, они не чувствительны ниже 1 000 гПа. Для большинства песчаных почв это выходит за пределы доступной воды.

Новый тип гипсовых блоков состоит из мелкозернистой матрицы гипса, спрессованной в блок, содержащий электроды. Внешняя поверхность матрицы надрезана на синтетические мембраны и размещена в перфорированном поливинилхлоридном или стальном защитном покрове. Строительные материалы увеличивают движение воды по направлению от блока и к блоку, делая его более чувствительным к натяженности почвенной влаги в диапазоне 300–2 000 гПа. Это позволяет использовать их для различных текстур почв.

Блоки рассеяния тепла: они сделаны из пористого керамического материала. В пористый блок встроен небольшой нагреватель и датчик температуры, соединенный проводом с поверхностным счетчиком. Измерения проводятся путем подачи напряжения на внутренний нагреватель и измерения скорости отдачи тепла от нагревателя (рассеяние тепла). Скорость рассеяния тепла связана с содержанием влаги.

Датчики рассеяния тепла чувствительны к почвенной влаге при большом диапазоне ее содержания, но для того, чтобы их производить, они должны быть индивидуально откалиброваны. Эти блоки значительно дороже, чем блоки электрического сопротивления.

Достоинства: это быстрый, относительно недорогой метод, который можно неоднократно использовать.

Недостатки: блоки плохо работают в почве грубого механического состава, сильно разбухающей и оседающей или солонцеватой почве. Точность измерений невысока, кроме случаев, когда блоки индивидуально откалиброваны для наблюдаемой почвы с помощью инфракрасного излучателя упорной плиты или гравиметрического метода. Блоки необходимо заменять раз в три года. В условиях сухих почв блоки обладают низкой чувствительностью. Блоки необходимо замачивать несколько часов в воде перед их установкой в поле.

4.5.4 Дистанционное зондирование [ГОСТ D]

Метод дистанционного зондирования является самым новым инструментом для оценки свойств почвенной влаги на поверхности земли или вблизи ее. С помощью полученной информации можно получить распределение почвенной влаги на несколько метров вниз. Дистанционное зондирование почвенной влаги осуществляется с помощью видимых, инфракрасных (ближних и тепловых), микроволновых и гамма данных (Engman and Gurney, 1991; Schultz and Engman, 2000). Но наиболее перспективные методы основаны на пассивных и активных микроволновых данных. Не совсем целесообразно применять методы с использованием видимых и ближней инфракрасной областей спектра, основанные на измерении отраженной солнечной радиации, поскольку многочисленные сопутствующие шумы мешают интерпретировать полученные данные. Методы теплового инфракрасного излучения основаны на отношениях дневного цикла температуры и влажности почвы, которые зависят от типа почвы и в основном ограничены условиями.
ГЛАВА 4. ИСПАРЕНИЕ, СУММАРНОЕ ИСПАРЕНИЕ И ВЛАЖНОСТЬ ПОЧВЫ

Ссылки и дополнительная литература

Всемирная Метеорологическая Организация, 1996 г.: Руководство по метеорологическим приборам и методам наблюдений (ВМО-№ 8), шестое издание, часть I, глава 6, Женева.

УРОВНИ ВОДЫ РЕК, ОЗЕР И ВОДОХРАНИЛИЩ

5.1.1 Общие положения

Уровнем воды называется высота поверхности воды в реке, озере или другом водном объекте по отношению к некоторой постоянной плоскости сравнения (ISO, 1988b). Данные об уровнях воды рек, озер и водохранилищ используются непосредственно для прогнозирования стока, для определения границ возможного затопления во время наводнений и при проектировании сооружений на водных объектах или поблизости от них. После построения связи уровней воды с расходом воды в реках или объемом воды в озерах и водохранилищах, данные об уровнях служат основой для расчетов стока или изменения запасов воды в водоемах. Более полно эти вопросы рассмотрены в Manual on Stream Gauging (Наставление по измерению расхода воды)(WMO-No. 519).

При выборе места для поста наблюдений следует руководствоваться целью проведения наблюдений и доступностью места. При выборе места на реках важным фактором являются гидравлические условия, особенно в тех случаях, когда данные об уровне воды используются для подсчетов стока. Водомерные посты на озерах и водохранилищах, как правило, располагают около истоков рек, вытекающих из них, но выше той зоны, в которой увеличение скорости вызывает понижение уровня.

5.1.2 Устройства для измерения уровня воды [ГОСТ C71]

5.1.2.1 Устройства для визуальных отсчетов уровня

В гидрометрической практике применяются различные типы нерегистрирующих устройств для измерения уровня воды. Наиболее распространены из них следующие:

a) вертикальная водомерная рейка;
b) скосенная или наклоненная водомерная рейка;
c) передаточные водомерные посты, устанавливаемые на конструкциях над водой;
d) градуированная штанга, лента, трос или игольчатая рейка для измерения расстояния до поверхности воды;
e) максимальная рейка для получения высоты пика наводки за счёт сцепления гранулированной пробки с градуированной рейкой, находящейся в фиксированной точке по отношению к нулевому уровню.

5.1.2.2 Самописцы уровня

Существует много различных типов самописцев уровня воды непрерывного действия. Их можно классифицировать по принципу действия и принципу записи.

Широкое применение получила установка, состоящая из успокоительного колодца, соединенного с рекой с помощью труб; в колодце помещается поплавок, тросям или лентой соединенный с колесом записывающего устройства. В потоках с большими скоростями, во избежание понижения уровня воды в колодце, может возникнуть необходимость установки специальных неподвижно закрепленных насадок на концах подводящих трубопроводов.

Самописец может быть механическим или электронным. Самописцы с колесом, соединённым с ручкой или карандашом, помещённым на ленточную карту, передвигаемую механическими часами, доказали свою надежность и по-прежнему широко используются. Выбор масштабов времени и записи уровня определяется амплитудой колебаний уровня, тесной связью уровня и расхода воды и стоковыми характеристиками бассейна. В главном офисе лента самописца может быть оцифрована для ввода данных в компьютер. Колесо может быть также напрямую подсоединено к кодирующему устройству. Кодирующее устройство позволяет получить аналоговые или цифровые значения, которые могут быть считаны и сохранены в устройстве регистрации данных.

Кроме того, применяются также различные типы самописцев уровня, основанные на передаче давления; принцип их действия основан на том, что статическое давление в фиксированной точке потока прямо пропорционально напору воды в этой точке. Эта зависимость описана с помощью следующего уравнения:

\[\text{Уровень воды} = \left(P_{\text{статическое}} - P_{\text{атм}} \right) C, \]

где \(P_{\text{статическое}} \) — это давление в барах в фиксированной точке водяного столба (необходимо убедиться в том, что никакое динамическое давление от движения воды не измеряется); \(P_{\text{атм}} \) — атмосферное давление в барах на поверхность водяного столба; и \(C \) — фактор нетто веса воды (\(C = 10,2 \) для пресной воды при 20 °C),
5.1.3 Порядок измерения уровня воды
5.1.3.1 Нуль графика водомерного поста

Во избежание отрицательных отсчетов водомерный пост должен быть установлен таким образом, чтобы его нулевой отсчет находился ниже самого низкого ожидаемого уровня. Нуль графика поста следует ежегодно проверять путем нивелировки с использованием реферной отметки местной станции. Очень важно сохранить один и тот же нулевой пост в течение всего периода наблюдений. По возможности, местные отметки нуля поста должны быть привязаны к национальной или региональной системе отсчета. Точное расположение станций должно быть тщательно задокументировано.

5.1.3.2 Самописцы уровня

Графические, цифровые, электронные или телеметрические устройства самописцев устанавливаются в соответствии с показаниями вспомогательного поплавкового уровнемера или водомерной рейки, находящихся в успокоительном колодце. Кроме того, необходимо установить водомерную рейку или передаточный уровнемер на реке, привязав их к той же отметке нуля для того, чтобы сравнивать уровень воды в успокоительном колодце и реке. Для водомерных постов, оборудованных самописцами, основанными на передаче давления и не имеющих успокоительных колодцев, водомерная рейка или передаточный уровнемер должна служить в качестве справочного устройства. Небольшие различия в высоте уровня могут быть вызваны течением у конца соединительной трубы. Значительные различия указывают на возможное засорение трубы.

5.1.3.3 Эксплуатация самописцев уровня в зимних условиях

а) Поплавковые самописцы: этот тип самописцев требует наличия успокоительного колодца, который необходимо предохранять от покрытия льдом. Его можно достичь, обогревая колодец электричеством или газом.

5.1.3.4 Компенсация за изменения в температуре и давлении

Сравнительно недавно стали использоваться два вида регистрирующих уровнемеров — использующие ультразвуковой и радиолокационный датчики. Принцип работы ультразвукового датчика основан на измерении скорости передачи импульса на ультразвуковой частоте (>20 КГц), который излучает передатчик, расположенный в устройстве над озером или рекой. Когда импульс ударяется о поверхность водного тела, он отражается обратно к датчику. Время T, которое проходит между моментом излучения сигнала и моментом получения эхосигнала, прямо пропорционально дистанции d между датчиком и поверхностью воды и обратно пропорционально скорости сигнала в воздухе. Оно может быть рассчитано как:

\[T = \frac{2d}{v}. \] (5.2)

Поскольку скорость звука зависит от температуры воздуха, для получения точного значения необходимо введение поправочного коэффициента. Принцип работы радиолокационного датчика похож на принцип работы ультразвукового, но использует высокие частоты (около 20 ГГц). Его преимущество заключается в том, что на высоких частотах скорость распространения сигнала не зависит от температуры воздуха.

Графические (аналоговые) самописцы могут применяться для определения уровня воды в реке. Уровень воды может так же быть определен в цифровой форме на фиксированных или же тритгерных интервалах.
ГЛАВА 5. КОЛИЧЕСТВО ПОВЕРХНОСТНЫХ ВОД И ИЗМЕРЕНИЕ НАНОСОВ

5.1.4 Частота измерений уровня воды

Частота наблюдений за уровнем воды определяется гидрологическим режимом водного объекта и задачами, которые ставятся при организации этих наблюдений. При непрерывной записи уровней на гидрометрических станциях ежечасные записи, как правило, достаточно для большинства рек. При измерении в малых реках с бурными паводками или урбанизированных водосборах уровень следует регистрировать более часто с целью получения достаточно точного гидрографа. В целом рекомендуется регистрировать уровень воды как можно чаще в пределах ограничений, заданных ёмкостью аккумулятора и объемом памяти. На реках с внезапными регулярными колебаниями уровня установка самописцев обязательна.

5.2 ЛЕД НА РЕКАХ, ОЗЕРАХ И ВОДОХРАНИЛИЩАХ

5.2.1 Общие положения

В районах, где образование льда затрагивает интересы судоходства или приводит к повреждениям гидroteхнических сооружений, или где происходит ледяные заторы (иногда даже образуя подпор в основном русле), наблюдения за ледовой обстановкой на реках, озерах и водохранилищах представляют большой интерес. Стеснение русла льдом может вызвать серьезные местные затопления. Многолетние наблюдения за ледовой обстановкой на реках исключительно важны при проектировании различных сооружений, изучении процессов образования и разрушения льда, а также при разработке методов выпуска ледовых прогнозов.

5.2.2 Элементы ледового режима

Найболее важными характеристиками ледового режима, которые подлежат наблюдению, являются следующие:

а) даты первого появления плавучего льда;
б) отношение площади поверхности дрейфующего льда к площади поверхности воды, свободной от льда (коэффициент ледяного покрова);
в) отношение площади поверхности дрейфующего льда к стационарной ледовой поверхности;
г) даты ледостава;
д) толщина льда;
е) процесс разрушения льда;
ж) даты вскрытия;
з) даты полного очищения рек и водохранилищ ото льда.

5.2.3 Методы наблюдений

Большинство из элементов, перечисленных в разделе 5.2.2, не могут быть измерены приборами и оцениваются визуально (субъективно), а результаты наблюдений излагаются в описательной форме. Поэтому очень важно, чтобы наблюдатель был хорошо подготовлен к наблюдениям и чтобы имелись четкие инструкции по проведению таких наблюдений.

Толщина льда измеряется с помощью ледового бура и ледомерной рейки в репрезентативных точках. С целью снижения ошибок измерений, вызванных пространственной изменчивостью толщины льда, измерения следует проводить не менее чем в трех точках, удаленных друг от друга на расстояние не менее 5 м, а результаты измерений усредняются. Необходимо также измерять высоту снега на льду.

На судоходных реках для точного указания местоположения участков, на которых обычно проводится ледомерная съемка, можно использовать километровые знаки или искусственные сооружения (дамбы и пр.). Местоположение особо опасных явлений (например, заторов или зажоров) следует указывать по отношению к другим ориентирам (например, мостам, сооружениям руслового регулирования и портам).
берегу, или путем аэрофотосъемки. На крупных реках, озерах или водохранилищах наблюдения с самолета за образованием и вскрытием льда представляют особую ценность. Они также полезны в случае ледовых затоплений, когда необходимо предупредить о наводнении.

При проведении съемки ледовых условий на участке, ширина полосы \(s \) и высота полета \(h_f \) могут быть определены в виде функции длины фокуса \(L_f \), применяемой фотокамеры и эффективной ширины \(l_f \) плёнки \(h_f = s \left(L_f/l_f \right) \). Поскольку величина \(L_f \) является постоянной для фотокамеры и приблизительно равна 1,0, то ширина полосы съемки приблизительно равна высоте полета. Посредством повторных аэрофотоснимков, через промежутки времени в несколько минут, наряду с характером ледяного покрова, можно определить и скорость движения льда. Если известна средняя толщина льда, то может быть вычислен также и расход (пропускная способность) льда.

Данные телевизионного или дистанционного зондирования, получаемые с метеорологических и геофизических искусственных спутников, также очень полезны для оценки ледовых условий на озерах и водохранилищах (Прокачева, 1975).

5.2.4 **Сроки и частота наблюдений**

Наблюдения за состоянием льда проводятся одновременно с наблюдениями за уровнем воды, в то время как измерения толщины льда и высоты снега на основных реках, озерах и водохранилищах должны проводиться через каждые 5–10 дней, в критические периоды образования и вскрытия ледового покрова. Наблюдения с самолетов со специальными целями выполняются по мере необходимости.

5.2.5 **Точность измерений**

Из-за трудных условий ледовые измерения не могут быть очень точными. Однако погрешность измерения толщины льда не должна превышать 10–20 миллиметров или 5 %, независимо от его толщины.

5.3 **ИЗМЕРЕНИЕ И РАСЧЁТ РАСХОДА ВОДЫ**

5.3.1 **Общие положения** [ГОСТ Р 70]

Расход воды представляет собой количество воды в единицах объема, протекающей через поперечное сечение потока за единицу времени. Расход воды за данный период времени может быть измерен различными методами, выбор которых зависит от превалирующих условий на данном участке русла. Обычно расход воды зависит от соответствующего уровня воды на гидрометрической станции.

Точность измерения расхода воды зависит от времени, которое нужно для проведения измерения, и изменчивости уровня или расхода в процессе измерения. Следует избегать изменений, происходящих во время измерения ниже по течению, поскольку они могут повлиять на результат.

5.3.2 **Измерение расхода воды при помощи гидрометрических вертушек** [ГОСТ Р 79, Р 85, Р 86, Р 88, Р 79]

Измерение расхода воды методом скорость — площадь пояснено примером на рисунке I.5.1. Глубина потока

Рисунок I.5.1. Расположение точек измерений в поперечном сечении потока
в поперечном сечении измеряется по вертикалям градуированной штангой или лотом. Одновременно с промерами глубины проводятся измерения скорости течения вертикалью в одной или более точках по вертикалям. Измерения ширины, глубины и скорости течения позволяют определить расход воды для каждой части поперечного сечения, заключенной между вертикалями. Общий расход воды равен сумме расхода всех частей поперечного сечения (ISO, 1979b).

5.3.2.1 Выбор створа
Измерение расхода воды не обязательно проводить строго в месте установки уровнемера, т. к. он одинаков возле уровнемера и на прымывающем к нему участке реки. Наибольшая точность может быть достигнута при измерении расхода воды в створах, имеющих следующие характеристики (ISO, 1979b):

а) направление течения во всех точках створа должно быть параллельным и проходить под прямым углом к поперечному сечению;

б) кривые распределения скоростей должны обладать плавными очертаниями в вертикальной и горизонтальной плоскостях;

в) скорость течения должна быть не менее 0,150 м·с\(^{-1}\);

г) русло должно быть устойчивым и иметь прямо-линейные очертания;

д) глубина потока должна быть не менее 0,300 м;

е) русло должно быть свободно от водной растительности;

ж) условия в русле не должны благоприятствовать образованию шуги и донного льда (раздел 5.3.2.5.1).

Точность измерения расхода воды зависит от числа вертикалей, на которых проводятся измерения глубины и скорости течения. Скоростные вертикали следует размещать таким образом, чтобы наибольшим образом определить продольный профиль русла и горизонтальные вариации скорости. Как правило, расстояние между двумя смежными вертикалями не должно превышать 1/20 общей ширины потока, а расход воды, проходящей между ними, не должен превышать 10 % общего расхода.

Ширина русла и расстояние между вертикалями измеряются от постоянного начала (обычно начальная точка на берегу), которое должно находиться в створе поперечного сечения русла. Обычно расстояние между вертикалями определяется с помощью промаркированного троса, временно натянутого через реку, или по меткам, нанесенным краской на перилах моста или на гидрометрическом мостике (ISO, 1979b). При измерении ширины на больших реках могут применяться телеметрические системы или метод триангуляции.

Если промеры проводятся вброд на небольшой глубине, то его можно определять с помощью градуированной штанги, которая упирается в дно реки. Если применяется механический глубомер (лебедка со счетчиком), то сначала опускают промерный груз до его соприкосновения с поверхностью воды, и в этот момент ставят указатель счетчика глубин на ноль; затем груз опускают дальше, пока он не ляжет на дно, и после этого отсчитывают глубину по счетчику.

Если вес промерного груза недостаточен для того, чтобы не давать трассу отклоняться от перпендикуляра к водной поверхности, то следует угломером измерить угол отклонения. Зависимость между истинной глубиной \(d\) и наблюденной \(d_{ob}\), в зависимости от угла относа \(\psi\) и расстояния от поверхности воды до точки крепления промаркированного троса \(x\), показана на рисунке 1.5.2 и выражается уравнением:

\[
d = [d_{ob} – x (\sec \psi – 1)] [1 – k].
\]

Значения величины \(k\), приведенные в таблице 1.5.1, основаны на допущении, что силой гидродинамического давления на груз вблизи дна при сравнительно медленном течении можно пренебречь, и что трос и груз сконструированы таким образом, что они оказывают лишь незначительное сопротивление течению воды. При таких допущениях могут возникнуть значительные погрешности только при вертикальных углах больше 30°.
Таблица I.5.1. Поправочные коэффициенты k для разных значений φ

<table>
<thead>
<tr>
<th>φ</th>
<th>k</th>
<th>φ</th>
<th>k</th>
<th>φ</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°</td>
<td>0,0006</td>
<td>14°</td>
<td>0,0098</td>
<td>24°</td>
<td>0,0256</td>
</tr>
<tr>
<td>6°</td>
<td>0,0016</td>
<td>16°</td>
<td>0,0128</td>
<td>26°</td>
<td>0,0350</td>
</tr>
<tr>
<td>8°</td>
<td>0,0032</td>
<td>18°</td>
<td>0,0164</td>
<td>28°</td>
<td>0,0408</td>
</tr>
<tr>
<td>10°</td>
<td>0,0050</td>
<td>20°</td>
<td>0,0204</td>
<td>30°</td>
<td>0,0472</td>
</tr>
<tr>
<td>12°</td>
<td>0,0072</td>
<td>22°</td>
<td>0,0248</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3.2.3 Измерение скорости течения

5.3.2.3.1 Вертушки для измерения скорости

С вертушками чашечного типа также применяется механический бесконтактный счетчик для визуальных отсчетов.

Вертушки должны быть протарированы по всему диапазону скоростей, подлежащих измерению. Подробное описание методов тарировки вертушек дается в ISO 3455 (ISO, 1976). Тарировка вертушек может осуществляться как индивидуально, так и для целой группы вертушек. Индивидуально оттаарированные вертушки должны повторно тарироваться через 3 года или после 300 часов эксплуатации, либо когда надежность их работы вызывает сомнение (Технический регламент (ВМО-№ 49), том III, приложение).

5.3.2.3.2 Измерение скорости при помощи гидрометрической вертушки

Скорость измеряют в одной или нескольких точках в каждой вертикали путем отсчета числа оборотов ротора в течение промежутка времени не менее 30 секунд. В тех местах, где скорость подвергается большим периодическим пульсациям, время измерения скорости соответствующим образом должно быть увеличено (Технический регламент (ВМО-№ 49), том III, приложение).

На мелких реках вертушка удерживается в требуемом положении с помощью упорной штанги, но на глубоких ее подвешивают к тросу или подвешной штанге и опускают в воду с моста, гидрометрической люльки или лодки. Если при измерениях пользуются лодкой, то вертушку надо держать в воде в таком положении, чтобы на нее не влился образуемый лодкой воздушный поток. После того как вертушка будет установлена в избранной точке в вертикальном положении, прежде чем вести запись, ей следует дать возможность приспособиться к потоку. Если невозможно избежать отклонения потока, то измеряется угол между направлением потока и нормалью к поперечному сечению, на который затем корректируется измеренная скорость. Если измеренный угол составляет с нормалью γ, то:

$$V_{\text{нормаль}} = V_{\text{измеренная}} \cos \gamma.$$ (5.4)

Вертужка на подвесном кабеле автоматически показывает направление благодаря хвостовым стабилизаторам, встроенным в вертушку. В некоторых случаях, например при использовании наклонного моста в качестве створа, горизонтальные расстояния должны быть корректированы следующим образом:

$$d_{\text{нормаль}} = d_{\text{измеренная}} \cos \gamma.$$ (5.5)

Вертужку необходимо периодически вынимать из воды для осмотра. Для надежного и точного измерения очень низких скоростей могут использоваться специальные вертушки, если они испытаны в этом диапазоне скоростей.

Горизонтальная ось вертушки должна располагаться от поверхности воды на расстоянии, не меньшем чем полтора высоты ротора, или на расстоянии от дна русла, не меньшем чем три высоты ротора. Кроме того, никакая часть прибора не должна выступать из воды (Технический регламент (ВМО-№ 49), том III, приложение).

5.3.2.3.3 Определение средней скорости на вертикали

Средняя скорость воды на каждой вертикали может быть определена одним из следующих методов:

а) метод распределения скорости;

б) методы приведения к точкам;

в) интеграционный метод.

Выбор соответствующего метода определяется выделенным для измерения временем, шириной и глубиной потока, условиями русла, изменчивостью уровня воды, скоростью потока, наличием ледяного покрова, а также необходимой точностью.

Метод распределения скорости

Средняя скорость течения по этому методу определяется по скорости, измеренной в нескольких точках на
каждой вертикали от поверхности воды до дна. Величина скорости, измеренная в каждой точке, должна наноситься на график, и средняя скорость на вертикали определяется делением площади эпюры скоростей на глубину. При построении эпюры может потребоваться определить скорость ниже точки последнего измерения, для этого используют предположение, что скорость на некотором расстоянии от диа пропорциональна log x. Строится зависимость измеренной скорости в точках, расположенных ближе к дну русла, от log x, которая аппроксимируется прямой линией. Построенная зависимость легко экстраполируется и используется для определения скорости в точках, расположенных ближе к дну реки.

В некоторых случаях метод распределения скорости может давать неудовлетворительные результаты при определении расхода воды, например, в случаях быстрого изменения уровня воды визуально наблюдаемое приращение уровня может быть больше, чем измеренное, за счет ошибок, возникающих из-за длительности времени, затрачиваемого на выполнение измерения.

Метод распределения скорости ценен в определении коэффициентов для применения к результатам, полученными другими методами, но обычно не используем в рутинных измерениях расхода воды по причине большего количества времени, требуемого на определение средней скорости.

Методы приведения к точкам

a) Метод одной точки: измерения скорости проводятся на 0,6 глубины реки от поверхности. Наблюдаемая скорость принимается за среднюю скорость на вертикали. Для глубин менее 1 метра принимается поправка, равная 0,92, если измерения выполнялись под ледяным покровом. Если измерения выполняются на ледяных явлениях, то вертушка должна устанавливаться на 0,5 глубины, и поправочный множитель к измеренной скорости принимается равным 0,88;

b) метод двух точек: измерения скорости проводятся на 0,2 и 0,8 глубины от поверхности каждой вертикали. За среднюю скорость на вертикали принимают среднее значение из двух измеренных величин;

c) метод трех точек: измерения скорости в каждой вертикали проводятся на 0,2, 0,6 и 0,8 глубины от поверхности. Среднюю скорость на вертикали определяют как среднее арифметическое из результатов трех измерений. Кроме того, измерение в точке 0,6 может придаваться больший вес, чем двум остальным, тогда средняя скорость на вертикали рассчитывается по уравнению:

$$ \bar{v} = 0.25 \left(v_{0.2} + 2v_{0.6} + v_{0.8} \right); \quad (5.6) $$

d) метод пяти точек: измерения скорости в каждой вертикали могут проводиться на 0,2, 0,6 и 0,8 глубины ниже поверхности и как можно ближе к поверхности и дну. Средняя скорость на вертикали определяется планиметрированием эпюры скоростей, построенной по результатам измерений, или по уравнению:

$$ \bar{v} = 0.1 \left(v_{поверхности} + 3v_{0.2} + 3v_{0.6} + 2v_{0.8} + v_{русла} \right) ; \quad (5.7) $$

e) метод шести точек: измерения скорости на каждой вертикали проводятся с помощью вертушки, которая опускается на 0,2, 0,4, 0,6 и 0,8 глубины от поверхности воды, а также, по возможности, ближе к поверхности и ко дну. По наблюдаемым скоростям строится кривая распределения скоростей, и с помощью планшета определяется средняя скорость на вертикали, аналогично методу распределения скоростей:

$$ \bar{v} = 0.1 \left(v_{поверхности} + 2v_{0.2} + 2v_{0.4} + 2v_{0.6} + 2v_{0.8} + v_{русла} \right) ; \quad (5.8) $$

f) метод двух десятих: измерение скорости проводится на 0,2 от глубины. Коэффициент около 0,88 применяется к измеренной скорости для получения средней скорости на вертикали;

g) метод скорости на поверхности: измерения скорости проводятся как можно ближе к поверхности. Поверхностный коэффициент, равный 0,85 или 0,86 используется для расчёта средней скорости на вертикали.

Метод двух точек применяется в тех случаях, когда имеет место нормальное распределение скоростей, а глубина больше 60 см; при меньших глубинах применяют метод одной точки. Метод трех точек следует применять при измерениях под ледяным покровом, или когда русло заросло водной растительностью. Метод пяти точек применяется при очень неправильном распределении скоростей по вертикали. Метод шести точек может применяться в трудных условиях, например для заросшего или покрытого льдом русла. Также он применяется при очень неправильном распределении скоростей по вертикали. Метод двух десятих в основном используется в случаях, когда вертушку невозможно поместить на 0,8 или 0,6 глубины. Метод поверхностной скорости используется для измерения потоков настолько большой скорости, что полученные данные о глубине не представляются возможными. В этом случае общедоступные сведения о площади перечного сечения в данном месте или площади перечного сечения, измеренная как можно более быстро, могут быть использованы для получения глубины.

Точность каждого метода следует установить, по возможности, измеряя скорость в 6–10 точках на...
каждой вертикали во время нескольких первых измерений расхода воды в данном створе.

Интеграционный метод

По этому методу средняя скорость в вертикали определяется путем опускания и подъема вертушки по всей глубине с постоянной скоростью. Скорость опускания и подъема вертушки не должна превышать 5 % средней скорости течения в данном поперечном сечении и, в любом случае, она должна быть от 0,04 до 0,10 м·с⁻¹. Определяется среднее число оборотов вертушки в секунду. На каждой вертикали следует выполнить два полных цикла, если результаты отличаются более чем на 10 %, то измерения повторяются. Этот метод редко применяется на реках, имеющих глубины менее 3 м и скорости течения менее 1 м·с⁻¹. Интеграционный метод не следует использовать с вертикально-осевой вертушкой, поскольку вертикальное движение вертушки влияет на движение ротора.

5.3.2.4 Расчет расхода воды

Арифметические методы

a) Метод элементарных площадок: принимается, что поперечное сечение потока состоит из некоторого числа элементарных площадок, каждая из которых ограничена двумя смежными вертикалями. Если обозначить среднюю скорость течения на первой вертикали через \(v_1 \), среднюю скорость на второй вертикали через \(v_2 \), полную глубину на первой и второй вертикалях соответственно через \(d_1 \) и \(d_2 \), а горизонтальное расстояние между этими вертикалями через \(b \), то выражение для расхода воды \(q \) через элементарную площадку будет иметь следующий вид:

\[
q = \left(\frac{v_1 + v_2}{2} \right) \left(\frac{d_1 + d_2}{2} \right) b. \quad (5.9)
\]

Полный расход получается путем суммирования расходов, проходящих через все элементарные площадки.

b) Метод срединных площадок: расход воды через каждую площадку рассчитывается путем умножения величины \(vd \) на соответствующую ширину, измеренную вдоль линии поверхности воды. Величина \(d \) (выражающая ширину), принимается равной полусумме расстояний до ближайших двух вертикалей. В соответствии с рисунком 1.5.1 полный расход \(Q \) рассчитывается следующим образом:

\[
Q = \nabla v d_1 \left(\frac{b_1 + b_2}{2} \right) + \nabla v d_2 \left(\frac{b_1 + b_2}{2} \right) + \ldots \quad (5.10)
\]

Графические методы

a) Метод интегрирования скоростей и глубин: первым этапом обработки материала этим методом является построение для каждой вертикали эпюры распределения скорости течения по глубине. Площадь эпюры представляет собой произведение средней скорости на полную глубину на вертикали. Величины этих произведений откладываются вверх от линии, изображающей поверхность воды, и по полученным таким образом точкам проводится кривая. Площадь, заключенная между этой кривой и линией поверхности воды, представляет собой расход воды в данном поперечном сечении;

b) метод изотах: на основании эпюра скоростей на вертикалях строится диаграмма распределения скоростей в поперечном сечении, изображающая линии равных скоростей (изотахи). С помощью планиметра измеряют площади, заключенные между изотахами и линией поверхности воды, начиная от изотах с наибольшей скоростью. Далее строится другая диаграмма, на которой по оси абсцисс — соответствующие площади. Площадь, ограниченная полученной линией связи, представляет собой величину расхода воды в данном поперечном сечении (ISO, 1979b).

5.3.2.5 Измерение расхода воды под ледяным покровом

Измерение расхода воды под ледяным покровом требует знания приборов и технических приемов, описанных в разделах 5.3.2.1 по 5.3.2.4. В этих разделах приводится описание только того оборудования и той методики, которые специально предназначены для измерения расхода подо льдом.

5.3.2.5.1 Выбор створа

Рекомендуется выбирать несколько поперечных сечений в период открытого русла, когда можно легко оценить руслоизменения. На некоторых гидрометрических станциях один и тот же створ может быть использован для измерений как зимой, так и летом; однако важнее проводить зимние измерения в подходящих условиях, нежели стремиться к сохранению измерений в одном створе. После того как первоначальный выбор створа сделан, следует пробить вдоль створа четыре разведочные лунки на равных расстояниях одна от другой для того, чтобы убедиться в отсутствии шути и неравномерного распределения скорости течения. Следует по возможности избегать участков, на которых имеется вероятность появления шути, потому что частицы шути затрудняют работу вертушки и мешают определять толщину льда. Кроме
тою, в шуге могут наблюдаться малые скорости, которые нельзя определить обычными методами.

Зимние паводки часто приводят к прорыву воды из-под льда с образованием двух независимых потоков, из которых один течет по льду, а второй под ним. Зимние паводки часто приводят к прорыву воды из-под льда с образованием двух независимых потоков, которые нельзя определить обычными методами.

5.3.2.5.2 Оборудование

а) Пробивание лунок: при значительной толщине льда для устройства лунок желательно применять механический ледовый бур или цепную шуру. Для тонкого льда можно использовать шпуру;

б) определение эффективной глубины: эффективная глубина воды под ледяным покровом представляет собой полную глубину за вычетом толщины погруженного льда. Эта толщина измеряется от поверхности воды в лунке до нижней кромки льда с помощью ледовой рейки, представляющей собой L-образную размеченную вешку достаточной длины. Короткое плечно L-образной рейки подводят под нижнюю поверхность льда и отчитывают по нанесенным на рейке делениям глубину слоя воды от ее поверхности до нижней кромки льда. Если в лунке под поверхностью кристаллического льда находится шуга, то для определения глубины, на которую кончается слой шуги, опускают вертушку со свободно вращающимися ротором ниже слоя шуги. Затем вертушку медленно поднимают, пока вращение ротора не прекратится. Принимается, что в этой точке кончается чистая вода и начинается шуга;

c) комплект вертушки с грузом: если для устройства лунок во льду применяется ледовый бур, то для того, чтобы провести измерения в лунке, диаметр которой составляет обычно всего около 150 мм, необходимо пользоваться специальным измерительным комплектом, состоящим из вертушки и промерного груза. В комплект могут входить два каплевидных свинцовых груза, подвешенных один над вертушкой, а другой под ней, или один каплевидный груз, подвешенный под вертушкой. Если пробурить лунку достаточной величины то можно использовать стандартную вертушку с грузом, в соответствии с указаниями, содержащимися в разделе 5.3.2.3.1;

d) подвешивание вертушки: вертушка может быть опущена в воду с помощью штуцера, ручного промывного троса или барабана. Если полная глубина воды подо льдом выше трех или четырех метров, то обычно вертушку опускают на тросе вручную или с помощью барабана. Барабан укрепляется на выдвижной подставке (лебедке), которая устанавливается на полозьях. Для того чтобы предотвратить вертушку от замерзания при переходе с одной вертикали на другую, в очень холодную погоду лебедку можно оборудовать сосудомобогревателем с горячей водой или камерой с горячим воздухом. При небольших глубинах, когда вертушка со снятым хвостом опускается в лунку на штанге, необходимо определять положение вертушки с тем, чтобы ее правильно устанавливать по отношению к направлению течения.

5.3.2.5.3 Измерение расхода воды

а) Размещение вертикалей: указания, содержащиеся в разделе 5.3.2.2, пригодны также и для размещения вертикалей при наличии ледяного покрова. При выборе количества и местоположения вертикалей, изменения толщины льда и слоя шуги по створу должны учитываться таким же образом, как и изменения глубины. Если поток воды разделяется на несколько различных русел, то в каждом русле следует выбрать не менее трех вертикалей;

б) измерение скорости: для повышения точности рекомендуется вычертить эпюры скоростей по данным измерений через каждую десятую долю эффективной глубины, по крайней мере, на двух вертикалях. Таким образом можно установить, если это необходимо, переходные коэффициенты от средней скорости, определенной стандартными методами в период открытого русла, к средней скорости на вертикали под ледяным покровом. При незначительной глубине можно определять скорость лишь в одной точке, на 0,5 или 0,6 истинной глубины, но обычно при этом требуется определить коэффициент для перевода измеренной скорости в среднюю по ширине русла. При большой глубине (более 1 м) следует измерять скорость в следующих точках: в двух точках — на 0,2 и 0,8 эффективной глубины; в трех точках — на 0,15, 0,5 и 0,85 эффективной глубины; в шести точках — на 0,2, 0,4, 0,6 и 0,8 эффективной глубины у поверхности льда и у дна. Среднее из скоростей, измеренных методами двух или трех точек, можно принять в качестве средней скорости на вертикали. Измерение скорости методом шести точек описано в разделе 5.3.2.3.3;

c) общие замечания: при измерении расхода воды с ледяного покрова необходимо соблюдать соответствующие меры предосторожности. Например, при продвижении вдоль створа необходимо всегда проверять перед собой лед с помощью шуруса. Если скорость течения, измеренная в условиях ледяного покрова, окажется меньше начальной скорости вертушки, то следует перенести створ на другой участок реки, где скорость течения больше. Необходимо следить за тем, чтобы ротор вертушки свободно вращался, и чтобы не было помех ото льда, скапливающегося около вертушки или намерзающего на ней, при перемещении
от одной вертикали к другой. При проведении наблюдений следует вести подробные записи состояния погоды и ледовых условий не реке, особенно в контрольных створах. Эти записи могут оказать полезными при расчете расхода воды за период между измерениями.

5.3.2.5.4 Расчет расхода воды
Расчет расхода воды под ледяным покровом проводится по тем же правилам, что и расчет расхода воды при открытых руслах, изложенным в разделе 5.3.2.4, с тем отличием, что вместо полной глубины используется эффективная глубина.

5.3.2.6 Точность измерений

5.3.3 Измерение расхода воды с помощью поплавков [ГОСТ C86]
Этот метод следует применять в тех случаях, когда невозможно пользоваться вертушкой вследствие неподходящих скоростей течения или глубин реки, либо вследствие большого количества взвешенных частиц, либо если расход должен быть измерен в течение очень короткого срока.

5.3.3.1 Выбор створов
На прямолинейном участке русла следует выбрать три створа на таком расстоянии друг от друга, чтобы можно было точно измерить время движения поплавка от одного створа к следующему. Рекомендуется продолжительность движения поплавка равная 20 секундам, но иногда на малых реках с большими скоростями течения, на которых часто бывает невозможно найти прямолинейный участок достаточной длины, продолжительность движения поплавка может быть более короткой.

5.3.3.2 Поплавки
Для измерения скорости течения применяются поверхностные поплавки и гидрометрические шесты. Поверхностными поплавками называются поплавки, глубина погружения которых в воду составляет меньше одной четверти глубины потока. Поверхностные поплавки следует использовать в тех случаях, когда их движение не подвергается влиянию ветра. Глубина погружения гидрометрического шеста превосходит одну четверть глубины потока. Гидрометрические шесты не должны касаться дна потока. В периоды, когда пребывание на реке становится небезопасным, можно использовать в качестве естественных поплавков плавающие деревья или льдины.

5.3.3.3 Порядок измерений
Поплавки должны быть равномерно распределены по всей ширине реки. Поплавки следует запускать на достаточном расстоянии от верхнего створа выше по течению для того, чтобы они могли приобрести постоянную скорость к моменту подхода к этому створу. Моменты времени, когда поплавки пересекают каждый из трех створов, засекаются по секундомеру. Эту операцию следует применять к поплавкам по всей ширине реки. Ширина реки должна быть разделена на сегменты с равным, или примерно равным расстоянием сегментов. Количество сегментов должно быть не меньше трёх, а при возможности — не меньше пяти. Расстояние от берега до поплавков при прохождении каждого створа может быть определено с помощью соответствующих оптических приборов, например теодолита.

Глубина русла в створе может быть определена на основе топографических методов.

5.3.3.4 Расчет скорости течения
Скорость поплавка равняется расстоянию между створами, деленному на время добегания. Как минимум пять значений скорости течения должны быть взяты на каждом сегменте, и среднее этих значений должно быть умножено на переходный коэффициент для получения средней скорости течения для каждого сегмента. Этот коэффициент зависит от распределения скоростей по вертикали и относительной глубины погружения поплавка. Этот коэффициент следует по возможности определять для каждого створа с помощью анализа результатов измерения расхода воды в этом створе, выполненных вертушкой. В случае отсутствия таких измерений, для приближенных расчетов можно использовать значения переходного коэффициента Ф, приведенные в таблице I.5.2.

При альтернативном способе определения скорости поплавков вычерчивается график их скорости в зависимости от расстояния до берега, и по этому графику определяется средняя поверхностная скорость вдоль створа. Средняя скорость течения в поперечном сечении реки равна средней поверхностной скорости, умноженной на коэффициент К, значение которого устанавливается, если это возможно, по результатам
5.3.4.1 Общие требования
Раствор стабильного трасера вводится в поток либо с равномерной интенсивностью, либо мгновенно. Для расчета расхода воды требуется знание следующих факторов:

а) интенсивности введения раствора при использовании метода постоянной скорости ввода или общего количества введенного раствора при методе непрерывного ввода;

б) концентрации трасера в вводимом растворе;

в) тарировочное отношение между концентрацией трасера и отмеченными свойствами (к примеру, электропроводность, цвет или радиоактивность) на месте проведения измерения, после того как он хорошо перемешался по бокам потока.

Точность этих методов в основном зависит от следующих условий:

а) должно быть достигнуто полное перемещивание введенного раствора по всему поперечному сечению потока до того, как раствор достигнет контрольного створа; если раствор трасера вводится равномерно и непрерывно, то его концентрация должна быть одинаковой по всей площади контрольного сечения; если раствор трасера вводится мгновенно, то во всех точках этого сечения \(f \) величина должна быть одинаковой, где \(c \) — концентрация; \(T \) — время, в течение которого все количество трасера проходит через заданную точку сечения;

б) не должно происходить абсорбции индикатора донными отложениями, наносами, водорослями и организмами, а также разложения трасера в воде потока. Концентрацию трасера в потоке следует определять в контрольном створе и, по крайней мере, еще в одном нижерасположенном сечении потока, чтобы убедиться, что не происходит систематического изменения \(c \), вредной концентрации от одного створа к другому.

5.3.4.2 Выбор участка
Основным критерием при выборе участка реки для измерения расхода воды методом смешения является полное перемешивание введенного раствора с речной водой на сравнительно коротком отрезке русла. Ускорению перемешивания способствует большая шероховатость русла и другие его особенности, обусловливающие высокую турбулентность потока, например: водопады, крутые извилины или неожиданные препятствия. Небольшое влияние родаминового красителя или флуоресцеина может помочь при оценке условий перемешивания воды на измерительном участке. Большие участки стоячей воды между местом вливания и местом взятия пробы влияют на смешивание, поэтому трасер не будет достаточно перемешан в створе на месте взятия пробы.

5.3.4.3 Трасеры и оборудование для их обнаружения
Любое вещество может быть использовано в качестве трасера, если оно:

а) обладает способностью легко растворяться в речной воде при обычных температурах;

б) отсутствует в речной воде или встречается в ней в весьма малых количествах;

в) не разлагается в речной воде и не абсорбируется наносами, водорослями и другими организмами;

г) может точно измеряться простыми методами;

д) является безвредным для человека, животных и растений в тех концентрациях, в которых оно распространяется в речном потоке.

Таблица I.5.2. Значения коэффициента \(F \) для перехода от скорости поплавка к скорости течения как функции отношения глубины погружения поплавка к глубине потока \(R \)

<table>
<thead>
<tr>
<th>(R)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10 или менее</td>
<td>0,86</td>
</tr>
<tr>
<td>0,25</td>
<td>0,88</td>
</tr>
<tr>
<td>0,50</td>
<td>0,90</td>
</tr>
<tr>
<td>0,75</td>
<td>0,94</td>
</tr>
<tr>
<td>0,95</td>
<td>0,98</td>
</tr>
</tbody>
</table>
Самым дешевым трасером является поваренная соль. При мгновенном запуске ее раствора в реку требуется сравнительно небольшое ее количество, а определение ее концентрации в воде методами электро-проводности довольно несложно.

Для метода смешения широко применяется дигидрат дихромата натрия. Его растворимость в воде сравнительно высока (600 кг/м-3), и он удовлетворяет большинству требований, изложенных в разделе 5.3.4.1. С помощью колориметрического анализа (ISO, 1987) могут быть измерены весьма незначительные концентрации этого вещества в воде.

Хлорид лития имеет растворимость в воде 600 кг/м -3. Пламенный фотометрический анализ может обнаружить концентрации лития менее 10-4 кг/м-3.

Для измерения расхода методом смешения применяются: нитрат натрия, нитрат натрия и тетрагидрат сульфата марганца.

В США для метода смешения широко используется родамин WT. Его абсорбционные характеристики намного лучше, чем характеристики других родаминовых красок. Концентрация краски измеряется на участке с помощью флуориметров, которые могут определять концентрации 5–10 частей на миллиард.

Для метода смешения применялись такие радиоактивные элементы, как бром-82, золото-198, йод-131 и натрий-24. С помощью счетчика с датчиком, опущенным в воду или стандартную измерительную камеру, можно достаточно точно измерить концентрацию этих элементов, равную всего 10-9 степени. Хотя радиоактивные элементы являются идеальными трасерами, в некоторых районах их применение для измерения расхода воды в реках может оказаться ограниченным из-за создаваемой ими угрозы здоровью людей.

5.3.5 Расчет расхода воды косвенными методами [ГОСТ E70]

5.2.5.1 Общие положения

Во время паводков часто бывает невозможно прямо измерить расход воды вследствие чрезмерно быстрого его изменения, больших скоростей течения, ширин и глубины потока, большого количества мусора и обломочного материала; иногда во время паводков дороги становятся непроходимыми, а гидрометрические сооружения недоступными. При таких условиях максимальный расход паводка может быть определен после спада паводка с помощью расчетов, в которых совместно используются хорошо известные положения гидравлики и данные полевых наблюдений за состоянием русла и за метками высоких вод. Все косвенные методы требуют совместного решения уравнений неразрывности и энергии. Такие расчеты можно делать применительно к отдельным участкам речного русла, водопропускным трубам под дорожными насыпями и отверстия мостов, гребнями плотин и дамб.

Хотя расчетные формулы гидравлики различны для разных типов водотоков, во всех методах учитываются следующие факторы:

а) геометрические и физические характеристики русла и границные условия изучаемого участка;

б) отметки уровня воды во время пика паводка для определения верхней границы площадей поперечного сечения и разности в высотах двух значащих точек;

в) гидравлические факторы, основанные на физико-математических характеристиках, например, коэффициент шероховатости.

5.3.5.2 Полевое обследование

Для выбора наиболее подходящего участка для определения расхода воды при помощи одного из косвенных методов проводится предварительное обследование района по картам, с воздуха или путем выезда на место. Участок должен находиться как можно ближе к интересующему гидрометрическому створу, и между ними не должно быть крупных притоков или водозаборов. На участке должны иметься отчетливые метки высоких вод для того, чтобы было возможно устанавливать профиль поверхности воды во время прохождения пика паводка или половодья.

Детальная инструментальная съемка проводится для определения геометрии русла на выбранном и прилегающих участках, поперечного сечения русла, деталей и размеров водопропускных труб, мостов, плотин, дамб, дорог и других искусственных сооружений, а также местоположения и расположения меток высоких вод, оставленных паводком. Отмечаются все факторы, влияющие на шероховатость русла, и
ГЛАВА 5. КОЛИЧЕСТВО ПОВЕРХНОСТНЫХ ВОД И ИЗМЕРЕНИЕ НАНОСОВ

5.3.5.5 Измерение расхода воды в местах сжатия потока

Сужение речного русла в местах мостовых переходов создает резкий перепад уровня воды между поперечным сечением, расположенным на подходном участке и суженным сечением под мостом. Суженное сечение, ограниченное устоями моста и дном реки, является до некоторой степени расходомером, который может быть использован для расчетов паводочных расходов. Напор в суженном сечении определяют по меткам высоких вод (выше или ниже по течению), а геометрию русла и мостового перехода устанавливают путем полевого обследования. Уравнение расхода воды выводится на основании записи уравнений энергии и неразрывности для участка между двумя упомянутыми сечениями.

5.3.6 Измерение расхода воды на плотинах, дамбах и дорожных насыпях

Плотина, дамба или дорожная насыпь обычно образуют контрольное регулирующее сечение, расход в котором зависит от уровня воды на вышерасположенном участке. Максимальный расход в контрольном сечении может быть определен на основе полевого обследования меток высоких вод и геометрических характеристик сооружения. Методы определения разрабатываются в результате полевых и лабораторных исследований расходных характеристик водосливов, плотин и дамб.

Полевые исследования состоят в установлении разности уровней вверхном и нижнем бьефе по меткам высоких вод, в обследовании подходного поперечного сечения для установления скорости потока на подходе к сооружению и в точном определении профиля сооружения для того, чтобы определить соответствующий коэффициент расхода. В настоящее время имеется информация о коэффициентах для следующих водосливов:

a) тонкостенных водосливов со свободно падающей струей и затопленных;
b) водосливов с широким порогом, незатопленных;

и) плотин практического профиля, затопленных и незатопленных;

d) плотин неправильного профиля.

5.3.6 Измерение расхода воды в трудных условиях

Общие вопросы проблемы измерения расхода воды в сложных условиях рассмотрены в публикации ВМО "Level and Discharge Measurements under Difficult Conditions" (Измерения уровня и расхода воды в сложных условиях) (WMO-No. 650).

5.3.6.1 Неустойчивое русло

Для нестабильного русла характерны систематические перемещения, значительные деформации ложа, высокое содержание наносов и присутствие различного обломочного материала в потоке. Для того чтобы избежать русских деформаций, которые являются помехой в работе на постоянно оборудованном створе, желательно выбирать его на достаточно однородном и прямом участке реки, удаленном от различных сооружений (мостов и др.). Наиболее устойчивые берега располагаются вдоль мест сужения русла. На малых реках участок должен быть удобным для оборудования постоянного измерительного створа.
На малых реках, в которых нет переноса больших камней и обломков, предпочтительней проводить измерения стока при помощи гидрометрических лотков. В некоторых случаях на малых реках оборудуется искусственное русло для измерений расхода, которое улучшает кривую связи уровней с расходами. В зависимости от специфических условий участка оно может иметь форму водослива с широким порогом или лотка. Сооружение не должно вызывать нежелательных нарушений течения, должно иметь достаточную высоту, чтобы не испытывать влияния переменного подпора от нижерасположенного участка. В маловодные периоды измерительный створ должен обеспечивать хорошую связь между уровнем и расходом. На больших гидрометрических сооружениях предусматриваются пешеходные мостики, с которых осуществляется прочистка русл и измерения расхода вертушкой. На реках с неустойчивым руслом рекомендуется использовать вертушку в изолированной камере из-за высокого содержания взвешенных наносов. Поперечные рейки должны иметь специальное приспособление, удерживающее их от погружения в ил.

При измерении расхода воды методом скорости-площадь глубина обычно определяется перед началом и после окончания измерений скорости. В потоках с большими скоростями течений различные обломки могут приводить к существенным повреждениям вертушек, поэтому желательно сравнивать показания вертушек до и после выполнения измерений с показаниями стандартной вертушки, неиспользуемой в измерениях.

В реках с интенсивно смешающимися руслами распределение скоростей в поперечном сечении периодически меняется. Поэтому выбор местоположения скоростных вертикалей следует делать с учетом распределения скоростей на момент измерения данного расхода. Использование же постоянных вертикалей может приводить к систематическим погрешностям. На реках с интенсивным смешением русл предпочтение следует отдавать методу приведения к точкам, по возможности сократив число вертикалей (ISO, 1979b).

Если промеры глубины выполнялись дважды (до начала и после окончания измерения скоростей), то площадь поперечного сечения рассчитывается на основании средних значений глубин, полученных по двум измерениям. На больших реках, где местоположение промерных вертикалей обычно определяется по береговым знакам, вертикал двум промерам могут не совпадать. В этом случае площадь поперечного сечения потока для расчета расхода определяется по значениям глубин, снятых с усредненного профиля.

5.3.6.2 Горные реки

Основной особенностью горных рек является высокая скорость течения. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с интенсивно изменяющимися руслами, могут преграждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки имеют высокие скорости течения. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергядаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выраженной галечно-галечной подстилкой, могут прергаждаться валунами и обломками, иметь многочисленные водоразделы, перекрывающие русло реками, реки, перепадами и т.д. Горные реки часто мелкие, с ярко выражен...
требуются лоты весом до 200 кг, так как на больших реках максимальные скорости достигают 3–5 м∙с⁻¹. Для измерения глубины можно также использовать экголот.

При измерении паводочных расходов на малых реках наиболее предпочтительны системы дистанционного управления процессом измерения. Они могут быть разборными и использоваться в разных местах, в которых для установки оборудования нужно только натянуть трос через реку. При отсутствии таких систем можно использовать легкие переносные дюралиевые или резиновые лодки (не плоскодонные) с подвесным мотором и платформой для оборудования. В труднодоступные районы лучше добираться на вертолете.

При очень больших скоростях для измерения скорости могут использоваться поверхностные поплавки или стробоскопические инструменты. Стробоскоп имеет несколько вращающихся зеркал и телескоп, который направлен на поверхность воды. Скорость вращения зеркал подбирается таким образом, чтобы получить устойчивое изображение водной поверхности. Скорость потока определяется по скорости вращения зеркал. Этим методом могут измеряться скорости до 15 м∙с⁻¹, но предельная величина зависит еще от высоты точки наблюдения над поверхностью воды. Следует отметить, что измерения скорости стробоскопом также проводиться в очень мутном потоке с плавающим льдом и другими твердыми включениями, не позволяющими использовать вертушку. Коэффициент перехода от поверхностной скорости к средней скорости на вертикали зависит еще от высоты точки наблюдения над поверхностью воды. Следует отметить, что измерения скорости стробоскопом также проводятся в очень мутном потоке с плавающим льдом и другими твердыми включениями, не позволяющими использовать вертушку.

На широких реках (от 3 до 20 км) с несколькими рука-вами измерения скорости вертушкой чрезвычайно затруднены. В этом случае можно использовать метод движущегося судна (раздел 5.3.7.2) или акустические приборы Доплера (раздел 5.3.7.3). Ещё он удобен при прерывистом ледоходе или если река транспортирует различные обломки в период паводков. Если же лед или обломки сосредоточиваются в какой-либо части потока, то в этой части измерения осуществляются поплавковым методом, а для остальной части потока измерения проводятся с помощью вертушки. Аэрофотосъемка с использованием поплавков также может быть использована для измерений на широких реках.

5.3.6.3.2 Измерение расхода на участках с приливно-отливными явлениями

Если участок подвержен влиянию морских приливов, то необходимо учитывать следующее:

а) постоянное изменение уровня воды с изменением или без изменения направления течения;
б) непрерывное изменение скорости во времени со значительными градиентами даже на одной и той же глубине;
в) изменение распределения скоростей во времени;
г) изменение направления течения в цикле прилив–отлив с переходом скорости через нулевое значение;
д) наличие слоистых потоков с различной плотностью и направлением течения в разных слоях;
е) существенное изменение ширины и поперечного сечения потока;
ж) наличие крупномасштабной турбулентности (т. е. колебаний с периодом более 30 секунд и амплитудой изменения скоростей до 50 %) и сейсм.

Расход на участках рек с приливно-отливными явлениями обычно определяется одним из следующих методов (ISO, 1974): методом скорость–площадь, объемным методом или решением уравнения неустановившегося движения потока. Расход на приливноотливном участке может измеряться методом движущегося судна (раздел 5.3.7.2) или акустическим методом Доплера (раздел 5.3.7.5), особенно в периоды, когда эпюра скоростей близка к своему обычному виду. Могут также оказаться приемлемыми другие методы, например ультразвуковой (раздел 5.3.7.3).

При измерении расхода методом скорость–площадь, скорость измеряется в течение всего цикла прилива–отлива. Для того чтобы учесть различные направления течения, измерения обычно проводятся в нескольких точках на каждой вертикали. Одновременно с измерением скорости осуществляется непрерывное измерение уровня воды и глубины на вертикалях. Затем все измерения приводятся к моменту времени, на который вычисляется расход.

Точность метода скорость–площадь повышается, если:
а) приливно-отливный цикл, во время которого про-водятся измерения, является периодическим или почти периодическим;
б) течения, особенно в течение максимального прилива, параллельны друг другу и имеют во всех точках одинаковые углы к створу измерения;
в) кривые распределения скоростей по горизонтали и по вертикали имеют правильную форму на измерительном участке;
г) поперечный профиль створа однороден и не име-ет отмели.

Поэтому выбранный для измерения участок должен, по возможности, отвечать следующим требованиям:
а) поперечное сечение речного русла должно быть прямоолинейным и правильной формы;
b) глубина воды в створе должна быть достаточной для эффективного использования вертушки;
c) поперечное сечение русла должно быть устойчивым в течение цикла прилива—отлива;
d) расход должен проходить по одному или нескольким руслам, поперечное сечение которых можно определить с приемлемой точностью;
e) створ не должен находиться вблизи искусственного или естественного препятствий, искажающих структуру потока;
f) измерительный створ должен быть очищен от растительности;
g) следует избегать обратных течений, косых потоков и мертвых зон.

Створ должен быть размещён по обоим берегам хорошо различимыми знаками.

Для определения расхода в период подъёма и спада волны прилива проводятся измерения в течение всего цикла прилива — отлива. Для того чтобы точно определить момент нулевой скорости, измерения начинают и заканчивают на полчаса раньше начала и похёл окончания цикла прилива. В зависимости от имеющегося оборудования и характеристик выбранной окончанию цикла прилива — отлива. Для того чтобы определить момент нулевой скорости, измерения проводятся в течение всего цикла прилива — отлива. Для того чтобы точнее определить момент нулевой скорости, измерения начинают и заканчивают на полчаса раньше начала и похёл окончания цикла прилива. В зависимости от имеющегося оборудования и характеристик выбранного створа для измерений скорости могут применяться различные методы:
 a) при наличии достаточного количества плавсредств измерения могут проводиться одновременно на всех вертикалях в течение полного цикла прилива—отлива;
 b) при ограниченном количестве плавсредств наблюдаемые скоростные вертикали размечаются якорными буями. На одном или двух суднах выполняются измерения последовательными переходами от одной вертикали к другой, причем интервалы времени между измерениями на каждой вертикали не должны превышать один час. Кроме того, требуется ещё одна дополнительная лодка, с которой проводятся непрерывные измерения в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В этом случае кривая изменения скоростей, происходящих в течение полного цикла на эталонной вертикали. В это

Если происходит быстрое изменение скорости, то значения скорости в различных точках на вертикали должны выверяться на определенное время. С этой целью проводятся повторные измерения скорости или во всех точках вертикали, в направлении от дна к поверхности, или только в точке у поверхности.

Для вычисления расхода в каждой вертикали строится кривая изменений скорости во времени, с которой снимаются значения скорости в различных точках на вертикали.

Для расчета расхода объемным методом проводятся синхронные измерения уровня воды на границах измерительного участка, или участков, и заблаговременно определяются их геометрические характеристики (поперечное сечение, длина, площади затопления). Кроме того, выше по реке, за пределами зоны влияния приливов, оборудуется дополнительный пост, по которому можно определить фактический расход воды в реке. Если в широком эстуарии имеются поперечные уклоны, то уровни воды измеряются на обоих берегах. Приращение объема приливной призмы за расчетный интервал времени вычисляется по изменению средних глубин и площадей водной поверхности на границчных участках. Для того чтобы рассчитать средний расход, общее приращение объема нужно разделить на расчетный период времени и вычесть приток речных вод.

При использовании метода расчета расхода по уравнению неуставновившегося движения, делаются определенные допущения при решении уравнения для рассматриваемого поперечного сечения, например, на параллельность линий течения, на одинаковую плотность, на призматичность русла. Измерения обычно проводятся при двух типах приливного цикла (высоком и низком). Результаты вычислений используются также для корректировки параметров уравнений.
5.3.6.4 Водная растительность в руслах рек

Водная растительность в реках может быть источником весьма больших погрешностей. На малых реках желательно сооружать искусственное контрольное сечение. Если это невозможно по каким-либо причинам, то расходы следует определять методом скорость–площадь. При этом участок длиной от 6 до 10 м в зоне гидрометрического створа поддерживается полностью очищенным от водной растительности в течение всего вегетационного периода. Кроме того, на несколько большем участке по берегам удаляются кустарник и высокая трава.

Применение токсических веществ, предотвращающих рост водных растений, является эффективным только на короткий период времени. Поэтому наиболее практическим способом остается периодическая очистка участка русла. Растения, вырастающие в русле реки, срезаются специальной машиной или с помощью обычной косы.

Скорость течения на каждой вертикали измеряется в трех точках (0,15, 0,5 и 0,85 глубины). Если глубина вертикали меньше 0,40 м, то скорость измеряется методом одной точки.

При описании условий измерения расхода можно дать краткую характеристику состояния водной растительности.

Поскольку водоросли могут наматываться на винт вертушки, то в процессе измерения ее следует довольно часто осматривать и очищать. Если измерения проводятся методом одной точки, то следует тщательно контролировать регулярность поступления сигналов. Были проведены эксперименты по применению электромагнитного метода для гидрометрических работ в условиях зарастания русла (раздел 5.3.7.4).

5.3.7 Нетрадиционные методы измерения расхода воды

5.3.7.1 Общие положения

Определение расхода методом скорость–площадь, методом смешения и средствами гидравлического сооружения (раздел 5.4) имеют определенные ограничения и во многих случаях неприменимы. Ниже дается описание четырех новых методов измерения стока в открытых руслах, а именно: метод движущегося судна; ультразвуковой и электромагнитный метод и акустический метод Доплера.

5.3.7.2 Метод движущегося судна [ГОСМ Е79]

При этом методе на судно устанавливается специально спроектированный комплексный блок вертушек, которые показывают величину скорости на данный момент времени. Измерение проводится при пересечении потока на заранее выбранном участке, перпендикулярно течению. Во время безостановочного движения судна эхолотом измеряются геометрические размеры поперечного сечения русла, а не прерывно работающая вертушка измеряет совместную скорость потока и перемещения судна. По данным измерений в 30–40 точках (вертикалей) вычисляется расход. Скорость, измеренная в каждой точке поперечного сечения, представляет собой вектор относительной скорости течения воды, проходящей через блок вертушек. В этом блоке имеется флюгер, укрепленный на стальном стержне, на верхнем конце которого установлен угломерный круг с указателем, определяющим угол между направлением флюгера и действительным курсом судна. По этим данным и береговым маркерам тщательно размещенного створа определяется линия поперечного сечения. Для расчета расхода берутся средние данные измерений, полученные примерно по шести пересечениям потока в противоположных направлениях (ISO, 1979а; Smoot and Novak, 1969).

Расход воды рассчитывается обычным способом, принятым в методе скорость–площадь, — суммированием произведений площадей сегментов на скорость. Поскольку вертушка устанавливается обычно примерно на 1 м ниже поверхности воды, то необходим коэффициент для корректировки измеренной скорости. На больших реках этот коэффициент примерно одинаков для всего поперечного сечения и, как показали проведенные исследования, равен 0,85–0,95. Метод измерения расхода с помощью движущегося судна дает единичное измерение расхода с точностью ±5 % при доверительном уровне, равном 95 %.

5.3.7.3 Ультразвуковой (акустический) метод [ГОСМ С73]

Принцип ультразвукового метода состоит в том, чтобы проводить измерения скорости течения на определенной глубине в русле путем одновременной передачи импульсов в обоих направлениях через слой воды от датчиков, размещенных на берегах по обе стороны реки. Датчики, посылающие и принимающие звуковой сигнал, размещаются на противоположных берегах таким образом, чтобы угол между направлениями звукового импульса и потока составлял от 30 до 60°. Разница между временем прохождения импульсов через поток в верхнем направлении и между временем прохождения импульсов...
в нижнем направлении связана непосредственно со средней скоростью воды на глубине датчиков. Эту скорость можно связать со средней скоростью потока в поперечном сечении в целом. Система может выдавать прямой расчет расхода воды путем введения фактора площади в электронный процессор.

В идеальных условиях датчики устанавливаются на такой глубине, при которой они измеряют среднюю скорость потока. Поскольку на практике датчики фиксируются в определенном положении, и при любом изменении уровня их положение относительно точки измерения средней скорости потока может меняться, то измеренную скорость необходимо корректировать.

В настоящее время существует два типа систем ультразвукового измерения скорости. В первом типе систем датчики устанавливаются постоянно в определенном положении и тарируются с помощью вертушки. Во втором — датчики могут перемещаться или вертикально, или наклонно с помощью специального устройства. В последнем случае система имеет самоблокировку и не требует измерений вертушкой. Перемещая датчики вертикально (от 7 до 10 точек), проводят измерения скорости на нескольких уровнях. По каждой системе отсчетов строится эпюра вертикального распределения скоростей в возможно большем диапазоне уровней. Это позволяет определить, во-первых, наиболее подходящее положение для фиксирования датчиков, и, во-вторых, установить кривую связи уровней и коэффициентов расхода, как в первом методе.

На реках с небольшим диапазоном изменения уровня можно применять однодорожечную ультразвуковую систему. На реках с большими колебаниями уровней необходима система с несколькими парами ультразвуковых датчиков.

Точность ультразвукового метода зависит от точки, с которой измеряется время прохождения звукового импульса. Некоторые из имеющихся в настоящее время способов позволяют осуществлять эти измерения с очень высокой точностью (Smoot and Novak, 1969; Herschy and Loosemore, 1974; Smith, 1969; 1971; 1974; Botma and Klein, 1974; Kinosita, 1970; Holmes and others, 1970; Halliday and others, 1975; Lenormand, 1974).

5.3.7.4 Электромагнитный метод

Движение воды, текущей в реке, пересекает вертикальную составляющую магнитного поля Земли, в результате чего в воде возникает электродвижущая сила (ЭДС), которая может измеряться с помощью двух электродов. ЭДС прямо пропорциональна средней скорости в реке, в каждой элементарной поперечной струе воды в момент пересечения вертикальных магнитных линий Земли.

На рисунке I.5.3 схематично изображена электромагнитная гидрометрическая станция, у которой катушка размещается в ложе русла, магнитное поле имеет направление, ЭДС направлена по оси y, движение проводника, т.е. речного потока, совпадает с осью z. Закон электромагнитной индукции Фарадея связывает длину движущегося в магнитном поле проводника с генерируемой ЭДС через уравнение (Herschy and Newman, 1974).
Однако на практике большинство речных русел обладает значительной электропроводностью, которая будет передавать электрический ток от потока к руслу. Кроме того, наведенное поле будет пространственно ограничено и электрический ток, выходящий с площади этого поля, будет иметь эффект уменьшения выходного потенциала. Оба названных фактора уменьшают сигнал, а следовательно и выходное напряжение, пропорциональное средней скорости речной воды. Поэтому на электромагнитной гидрометрической станции необходимо измерять проводимость и воды, и русла.

Наиболее приемлемо подавать на катушку постоянный ток, направление которого меняется несколько раз в секунду, но может использоваться и переменный ток с частотой в 1 Гц. Типовая установка может иметь катушку из 12 витков двойного изолированного кабеля диаметром 16 мм, силой тока в 25 А и напряжением 20 В (Herschy and Newman, 1974).

Электромагнитный метод находит широкое применение на реках с водной растительностью, с высоким содержанием наносов или с неустойчивым руслом. Он позволяет получить непрерывную запись средней скорости в поперечном сечении, которая, вместе с данными об уровнях воды, необходима для вычисления расхода.

Точность метода зависит от используемого прибора для обнаружения и измерения малых напряжений. В настоящее время можно регистрировать сигнал в 100 нВ, который соответствует скорости воды примерно в 1 мм·с⁻¹. Для электромагнитной станции необходима тарировка участка с помощью вертушки или другими методами и определение связи между расходом и измеряемыми величинами (выходным напряжением).

5.3.7.5 Измерение расхода воды акустическими приборами Доплера

5.3.7.5.1 Общие положения

Достижения в области доплеровского оборудования сделали эти приборы жизнеспособной альтернативой для измерения расхода воды в реках и крупных водохранилищах. В течение последних лет доплеровские приборы и виды оборудования существенно изменились, и стал возможным использовать их на малых и неглубоких реках. Все виды оборудования используют принцип Доплера для измерения скорости взвешенных в воде частиц, которая необходима для расчета расхода воды. К акустическому доплеровскому оборудованию относятся преобразователи и температурные сенсоры, которые предназначены для работы в воде.

Ни один из этих приборов не требует периодической тарировки, которая необходима лишь в случае физического повреждения прибора.

5.3.7.5.2 Принцип Доплера

Акустический прибор Доплера (см. рисунок I.5.4) измеряет скорость воды на основе физического принципа, называемого доплеровским смещением. Согласно этому принципу, если источник звука движется относительно приёмника, то частота звука у приёмника смещена от частоты звука у источника. Прибор передаёт акустический сигнал в воду подобно гидролокатору на подводной лодке, но на гораздо более больших частотах. Этот сигнал отражается от частиц, находящихся в воде и двигающихся вместе с ней, и какая-то его часть возвращается на прибор. Прибор измеряет доплеровское смещение (изменение частоты) отраженного сигнала и использует эти данные для измерения скорости воды относительно прибора. Отраженные сигналы обладают смещением частоты (доплеровское смещение), пропорциональным скоростям рассеивающих частиц. Они перемещаются акустическим пучком:

\[
V = \frac{F_d}{2F_o} C. \tag{5.13}
\]

где \(F_d\) — доплеровская смещенная частота, полученная на преобразователе; \(F_o\) — частота передачи датчика; \(C\) — скорость звука; \(V\) — скорость рассеивающих частиц (воды).

Всё доплеровское оборудование оперирует на заданной частоте. Частота определяет, при каких условиях они лучше производят измерения. Прибор, работающий на более низкой частоте, обладает большим диапазоном расходов, чем прибор с более высокой
частотой. Количество и тип частиц в воде тоже определяет диапазон применения и качество измерений прибора. Если в воде очень мало частиц, диапазон будет заметно меньше, и качество данных может быть поставлено под сомнение.

Эти принципы справедливы для всех акустических приборов Доплера, однако разные приборы по-разному рассчитывают расход.

5.3.7.5.3 Акустические профилометры Доплера для измерения течения

Применение акустического профилометра Доплера для измерения течения (АПДТ) получило широкое распространение для измерения расхода воды на реке. В настоящее время на рынке имеется ряд приборов, предназначенных для использования на больших или малых реках. У них есть несколько общих характерных черт.

Приборы АПДТ могут быть установлены на движущееся судно, такое как надувная лодка (см. рисунок 1.5.5). Этот прибор одновременно измеряет для расчёта расхода воды скорость воды, глубину реки и маршрут судна. Этот метод позволяет рассчитать расход в то время, когда судно пересекает реку. Общий расход \(\Sigma Q \) рассчитывается в течение нескольких минут. Результат одного измерения недостаточно для получения точных значений стока/расхода; оно даёт лишь мгновенную картину потока. Для получения точных значений расхода воды нужно взять среднее с нескольких секторов исследования. Для расчёта расхода воды рекомендуется пересечение водоток как минимум 4 раза. В этом случае оценкой фактического расхода воды будет среднее из \(N \) значений расхода воды, рассчитанных на каждом поперечнике:

\[
\Sigma Q = \frac{\left(\Sigma Q_1 + \Sigma Q_2 + \Sigma Q_3 + \Sigma Q_4 + \ldots \right)}{N}.
\] (5.14)

Прибор должен быть соединён с компьютером, который рассчитывает расход воды. Как только прибор АПДТ обрабатывает сигнал, отраженный частицами в воде, он делит водный столб на некоторое количество дискретных сегментов, расположенных по вертикали. Эти сегменты называются сегментами глубины. Прибор АПДТ определяет скорость и направление каждого сегмента глубины. В то же время сигнал со дна, который называется «боттом-трэк» (отклик дна), измеряет скорость и направление лодки. Это означает, что лодке не обязательно идти перпендикулярно течению.

Процедуры для сбора качественных данных становятся более стандартизованными по всему миру. Количество поперечников зависит от разницы между измерениями расхода. Если расход воды, измеренный на одном из четырёх поперечников, отличается больше, чем на 5 процентов, то должны быть произведены измерения как минимум на четырёх добавочных поперечниках, тогда измеренным расходом

Рисунок 1.5.5. Схема расположения типичного акустического доплеровского измерителя
будет считаться среднее значение из восьми. Иногда измерения выполняют даже на большем числе поперечников, чтобы избежать потенциальных отклонений. Пользователь должен настроить приборы до начала измерения. Выбор наиболее подходящего режима изо всех имеющихся зависит от условий места наблюдения за расходом (глубины, скорости воды и т. д.) на момент проведения измерения. Использование правильного режима важно для получения более высокой точности измерений расхода. Пользователь должен установить правильные значения глубины АПДТ и расстояния до берегов и убедиться, что крен и скорость людки/прибора в процессе измерения находятся в приемлемых пределах. Отклонение в любом из них может стать причиной существенных погрешностей итоговых измеренных расходов воды.

Другой вид акустического профилеметра Доплера производит измерения расхода воды, не используя «боттом-трэк». Вместо этого он использует секции или вертикали. В зависимости от характеристик реки, измерения расхода выполняются на 10–20 вертикалях, причем на каждую из них требуется 30–60 секунд. Такие приборы позволяют получить полный вертикальный профиль скорости; они могут быть легко установлены вертикали (0,6, или 0,2 и 0,8 глубины). Используя метод «скорость–площадь», он вычисляет расход воды, умножая площадь русла на среднюю скорость потока.

Фактические двухмерные (2D) и трехмерные (3D) данные о скорости потока выводятся в декартовой системе координат (XYZ) относительно ориентации измерительной головки. При выполнении измерений расхода воды используются только компонент X скорости (Vx). Измерительная головка должна быть перпендикулярна штанге для обеспечения правильных расчётов. Оператор не должен оценивать угол потока, как для одномерных 1D вертушек.

5.3.7.5.5 Измерение расхода со стационарной платформы

Акустическое оборудование Доплера может быть установлено на судно, но и на стационарную платформу для расчёта расхода воды на реках. Прибор обычно устанавливается на подводной конструкции, расположенной перпендикулярно течению реки, и измеряет скорость воды в нескольких точках двумерной плоскости. Эти приборы часто называют акустическими доплеровскими многоточечными измерителями скорости (АДМИС) (Gotvald, 2005).

Скорость воды, измеряемая при помощи АДМИС, используется для расчёта средней скорости русла реки, которая также называется показательной скоростью реки. Используя показательную скорость, расход может быть рассчитан различными способами. Этот подход называется методом показательной скорости. АДМИС предоставляет возможность измерять расход воды в реке при отсутствии или плохой взаимосвязи между уровнем и расходом воды. Метод показательной скорости рассчитывает расход воды по уравнению Q = VA, где Q — итоговый расход; V — средняя скорость; A — площадь русла. В последнее время значительно возросло использование акустических доплеровских измерителей скорости, установленных на стационарных площадках с целью измерения показательной скорости, необходимой для расчёта расхода воды на реках.

5.4 ГИДРОМЕТРИЧЕСКИЕ СТАНЦИИ

5.4.1 Назначение гидрометрических станций

Основной целью гидрометрических станций является предоставление систематических данных об уровне и расходе воды. Данные о речном стоке необходимы для
проектирования систем водоснабжения, проектирования гидротехнических сооружений, при эксплуатации систем управления водными ресурсами, а также при расчете наносов и расхода, включая загрязняющие вещества.

Поскольку без применения какого-либо из новых методов, описанных в разделах 5.3.7.3 и 5.3.7.4, проводить непрерывные измерения расхода воды невозможно, данные о расходе определяют по зависимости между уровнем и расходом, полученной на основе периодических измерений расхода и по систематическим наблюдениям за уровнем воды или при помощи измерительного устройства, тарировку которого выполнена в лабораторных или полевых условиях.

5.4.2 Выбор пункта наблюдений

Выбор рек для измерений расхода воды должен быть обусловлен принципами проектирования сети (раздел 2.4) и предполагаемым использованием данных о стоке. При выборе участка для устройства гидрометрической станции на данной реке следует руководствоваться следующими критериями, которым отвечает идеальный гидрометрический створ:

a) общее направление потока прямолинейно не менее чем на 100 м вверх и вниз от гидрометрического створа;

b) весь поток воды проходит по одному руслу при всех уровнях; нет бокового отвода воды вблизи створа и подповерхностного стока;

c) русло реки не подвержено размыву и отложению наносов и свободно от водной растительности;

d) берега реки устойчивы, достаточно высоки для пропуска паводков и очищены от кустарника и деревьев;

e) имеется устойчивое естественное контрольное сечение, ограниченное выходом коренной породы, или другой устойчивый желоб, позволяющий выполнять измерения расходов во время межени и ограничивающий русло во время прохождения максимального стока, или незатопляемое при всех уровнях водопады или пороги, по которым может быть установлена стабильная связь между уровнем и расходом воды. При отсутствии устойчивого естественного ограничителя для низких расходов необходимо рассмотреть возможность сооружения искусственного контрольного сечения;

f) имеется место выше гидрометрического створа, на котором можно установить будку самописца уровня воды с минимальной вероятностью появления обломками, переносимыми рекой, в период паводков. Отметка максимального подъема уровня, регистрируемая самописцем, должна быть выше любого паводка, ожидаемого за период действия станции;

g) гидрометрический створ расположен на достаточно расстоянии вверх по течению от места слияния с притоком или от участка с приливно-отливными явлениями, чтобы исключить возможное влияние колебаний уровня притока или приливов на измеряемый уровень;

h) вблизи выбранного гидрометрического створа имеется участок, пригодный для измерения расхода при любых уровнях, поскольку необязательно низкие и высокие расходы измерять в одном и том же поперечном сечении;

i) к участку имеются подходы для удобства установки оборудования и эксплуатации гидрометрической станции;

j) если требуется, можно установить телеметрическое оборудование или спутниковую связь;

k) при наличии ледовых явлений сохраняются условия для регистрации уровня и измерения расхода;

l) течение в поперечном сечении русла, содержащем гидрометрический створ, является докритическим на всех уровнях;

m) на поверхности вблизи гидрометрической станции нет волн и зяби.

Часто случается, что невозможно найти участок, удовлетворяющий всем этим требованиям. В этом случае приходится выбирать наиболее благоприятный участок для размещения гидрометрической станции.

5.4.3 Контроль связи между уровнем и расходом

Физический элемент или сочетание нескольких элементов, которые определяют связь уровня и расхода воды, определяют контрольные сечения. По одной классификации, различаются поперечные контрольные сечения русла, содержащие гидрометрический створ, и русло контрольные сечения. По другой — выделяются естественные и искусственные контрольные сечения.

Поперечное контрольное сечение существует в тех местах русла, где геометрия отдельного сечения вызывает сечение потока, или где существует резкий перепад в уклоне ложа русла. Сужение потока может вызываться местным подъемом ложа, например, в местах выхода скальных пород и естественных стремин, или при сооружении водосливов и дамб. Сечение потока может быть следствием уменьшения его ширины по естественным причинам или в результате человеческой деятельности в русле реки, например, при строительстве моста происходит значительное сужение потока, по сравнению с его естественным состоянием.

Русловое контрольное сечение существует в местах, где геометрия и шероховатость длинного участка ниже гидрометрического створа являются элементами,
ГЛАВА 5. КОЛИЧЕСТВО ПОВЕРХНОСТНЫХ ВОД И ИЗМЕРЕНИЕ НАНОСОВ

регулирующими связь уровня и расхода. Длина участка, который оказывает влияние в качестве контрольного сечения, увеличивается с увеличением расхода. Обычно, чем слабее градиент потока, тем длиннее участок руслового контроля.

Часто для создания искусственного контрольного сечения в русле сооружаются низкие плотины, водосливы или лотки. Такие контрольные сечения затапливаются при больших расходах, но в диапазоне низких и средних расходов они дают устойчивую связь уровня и расхода.

Хорошее контрольное сечение характеризуется двумя важными свойствами — стабильностью, которая обеспечивает устойчивую зависимость между уровнем и расходом, и чувствительностью, в результате которой небольшие изменения расхода приводят к существенному изменению уровня.

5.4.4 Измерительные сооружения

При менее благоприятных условиях необходима полевая тарировка сооружения для установления степени отклонения зависимости между расходом и напором от стандартной расчетной формулы, или для определения этой зависимости заново. Особенно важно периодически измерять расход при низком стоке другими методами для того, чтобы обнаружить изменения в коэффициенте расхода, вызванные отложениями наносов в верхнем бьефе или зарастанием водослива или лотка водорослями.

В настоящем Руководстве приводятся лишь общие указания относительно выбора типа и эксплуатации водосливов и лотков на гидрометрических станциях. Подробная информация об их геометрических характеристиках и формуллах зависимости расхода от напора содержится в работе WMO Use of Weirs and Flumes in Stream Gauging (Применение лотков и водосливов при измерении расхода воды) (WMO-No. 280).

5.4.4.1 Типы сооружений

Водосливы и лотки, применяемые на гидрометрических станциях, можно разделить на три группы:

а) тонкостенные водосливы, которые обычно устанавливаются на небольших водотоках с чистой (без наносов) водой или на небольших экспериментальных водосборах;

б) лотки, которые устраиваются на небольших реках и каналах, несущих наносы и мусор, или в тех случаях, когда потери напора у тонкостенных водосливов оказываются неприемлемыми;

в) водосливы с широким порогом, с треугольным и закругленным профилем, которые применяются на более крупных водотоках.

Водосливы и лотки могут быть незатопленными и затопленными. В первом случае расход является функцией уровня воды в верхнем бьефе, и возможно точное тарирование сооружения. Во втором случае расход является функцией уровня воды, как в верхнем, так и в нижнем бьефе, и при тарировании в лабораторных условиях достигается меньшая точность. На многих створах водосливы или лотки используются только для измерения малых расходов, а для больших расходов зависимость между уровнем и расходом определяется с помощью непосредственных методов измерения расхода.

5.4.4.2 Выбор типа сооружения

Выбор гидрометрического измерительного сооружения определяется стоимостью сооружения, характеристиками потока и русла на участке, требуемой точностью измерений, амплитудой расхода воды и напором. При выборе сооружений следует руководствоваться следующими критериями:

а) стоимость сооружения обычно является определяющим фактором в принятии решения о его строительстве. Она зависит в основном от ширины реки и условий ложа и берегов. Ширина реки определяет размеры сооружения, а структура и тип пород, слагающих ложе и берега, — тип сооружения, который выбирается из условий минимальной фильтрации под сооружением и в обход него;

б) выбор измерительного сооружения определяется характеристиками русла и условиями течения. При проектировании сооружения необходимо учитывать факторы, влияющие на скорость потока или число Фруда, а также влекомые наносы и устойчивость русла;

в) также при выборе типа гидрометрического сооружения, его формы и отметки порога должны...
учитываться три фактора — диапазон измеряемых расходов, требуемая чувствительность и допустимый напор. Чувствительность сооружения, т. е. изменение уровня в соответствии с изменением расхода при низком стоке, может потребовать сооружения либо V-образного водослива, либо водослива с горизонтальным порогом; d) на маленьких реках в течение ограниченных периодов времени могут быть использованы дешевые передвижные водосливы, сделанные, например, из брезента и лёгких металлических плит.

5.4.4.3 Измерение напора
Напор в устройстве обычно измеряется вверх по течению на расстоянии от устройства, приблизительно в три раза превышающем контрольную глубину воды при максимальном уровне *h_{max}*, при которой эффективен контроль поперечного сечения. При использовании некоторых водосливов особой конфигурации и всех типов лотков измерения уровня следует выполнять на определенных расстояниях от контрольного сечения, которые отличаются от общего правила (3 х *h_{max})*. Описание расположения водомерного устройства или его измерительной части в этих особых случаях содержится в публикации *Use of Weirs and Flumes in Stream Gauging* (Применение лотков и водосливов при измерении расхода воды) (WMO-No. 280). При эксплуатации гидрометрического сооружения нулевая отметка водомерного устройства должна быть установлена на уровне порога и затем регулярно контролироваться.

5.4.4.4 Эксплуатация измерительных сооружений
Как само русло, так и измерительные сооружения в нем, подвержены со временем изменениям, которые влияют на связь расхода и уровня. На подходном участке или у самого сооружения могут оседать песок, камни, мусор. Летом гребень плотины могут покрыть водоросли, зимой на сооружении может образоваться лед.

Для обеспечения точных непрерывных наблюдений нужно оцищать подход к водосливу от скоплений наносов и растительности. С измерительного сооружения следует удалять мусор, водоросли, лед. Нужно своевременно производить ремонт поврежденных частей сооружения. Необходимо периодически проверять высотное положение водомерного устройства. Также следует проводить периодические измерения расхода для выявления возможных изменений начальной тарировки.

5.4.5 Зависимость между уровнем и расходом

5.4.5.1 Общие положения
Связь уровня и расхода воды для большинства гидрометрических станций устанавливается путем построения графика, на котором измеренные расходы откладываются по оси абсцисс, а соответствующие им уровни — по оси ординат (ISO, 1981). Вид кривой расходов является функцией геометрических характеристик русла ниже измерительного створа. В прямоугольных координатах кривая обычно обращена выпуклостью вверх (зависит от значения показателя степени), поскольку расход воды часто может быть описан показательной функцией глубины потока. При построении графика на логарифмической клетчатке кривая на участке средних и высоких уровней приближается к прямой, если уровень представляет эффективный напор в контрольном сечении для средних и высоких уровней. В противном случае, зависимость между уровнем и расходом обычно содержит два или больше сегментов по причине геометрических смещений и/или сопротивления потока. Зависимость между уровнем и расходом может быть быстро выражена математическим выражением, полученным из доступных измерений. Это выражение может быть определено графическими методами или методами регрессии. Вне зависимости от того, какой метод используется для выделения зависимости между уровнем и расходом, его точность определяется:
a) количеством доступных измерений; b) разбросом измерений; c) средней неопределенностью измерений.

Оценочную зависимость между уровнем и расходом не следует экстраполировать. Там, где желательно выполнить экстраполяцию, рекомендуется применение непрямых методов, базирующихся на физических свойствах реального канала и гидравлического контроля.

На многих участках расход не является однозначной функцией уровня, поэтому для получения кривой расходов необходимо проводить непрерывные измерения дополнительных переменных. Например, в случаях, когда в гидрометрическом створе наблюдается влияние переменного подпора от впадающего ниже притока, приливов или расположенного ниже водохранилища, необходимо оборудовать вспомогательный пост для непрерывного измерения колебаний водной поверхности на измерительном участке. При неуставновившемся течении и малых уклонах направление изменения уровня может стать важной переменной, причем расход, который появляется в фазе подъема, может соответствовать более низкому уровню, чем такой же расход в фазе падения уровня.
5.4.5.2 Устойчивость зависимости между уровнем и расходом

Устойчивость связи уровня и расхода непосредственно зависит от стабильности контрольного сечения. Основной причиной изменений, происходящих в естественном контролируемом сечении, являются большие скорости течения воды. На естественные контрольные сечения в скальных обнажениях большие скорости не оказывают влияния, но галечные, гравийные и песчаные русла легко деформируются, причем из перечисленных наиболее сопротивляемостью обладают галечные русла, наименьшей — песчаные. Из естественных контрольных сечений наиболее изменчивыми из-за скоростной эрозии и отложений являются сечения в песчаных руслах.

Растительность в контрольном сечении завышает уровень для данного расхода, особенно при низком стоке. Она также ухудшает связь расходов с уровнями, уменьшая скорость течения и эффективную площадь водного потока. В районах с умеренным климатом каждую осень опавшая листва засоряет контрольное сечение и завышает его действительную отметку, поэтому его нужно регулярно очищать от листвы.

Ледяной покров также оказывает влияние на связь уровня и расхода, вызывая подпор, который может быть различным в зависимости от количества и характера льда. Если контрольное сечение остается открытым от льда, а измерительное устройство расположено недалеко от него, то вероятно не будет влияния подпора, даже если лед закроет весь подводящий участок. В этом случае ледяной покров будет снижать скорость течения на подводящем участке, и это влияние будет, вероятно, слабым. Однако, если измерительное устройство находится на значительном расстоянии вверх от контрольного сечения, то поверхностный лед на подводящем участке может вызывать подпор, так как закрытый льдом подводящий участок становится как бы частью руслового контрольного сечения.

Поверхностный лед, образовавшийся ниже контрольного сечения, может вызвать затопление и значительный подпор воды, распространяющийся на контрольное сечение. Донный лед может образовывать напластования на дне русла или естественного контрольного сечения, повышая уровень и оказывая влияние на расход. Степень влияния ледовых условий может быть точно установлена только путем измерений расхода и наблюдений за соответствующими уровнями, которые затем анализируются и сравниваются с соответствующими уровнями и расходами при открытом русле.

В разделе 5.3.2.5. рассматриваются различные дополнительные аспекты, которые необходимо учитывать при измерении расхода в ледовых условиях.

Искусственные контрольные сечения позволяют устранить или смягчить многие из нежелательных характеристик естественных сечений. Они не только физически стабильны, но и не подвергаются периодическому или прогрессирующему застранию водной растительностью. Водоросли в виде слизи, которые иногда образуются на искусственных контрольных сечениях, легко удаляются проволочной щеткой, и, кроме того, искусственные устройства самоочищаются от опавшей листвы. В умеренно холодном климите искусственные контрольные сечения в меньшей степени подвержены влиянию ледовых образований, чем естественные. Однако, если само контрольное сооружение остается неизменным, то на связь уровня с расходом может оказывать влияние изменение скорости в подводящем канале, вызванное эрозией, отложением наносов или растительностью.

5.4.5.3 Частота измерений расхода воды

При планировании числа измерений расхода воды и их распределения в течение года следует учитывать следующие факторы:
a) устойчивость зависимости между уровнем и расходом;
b) сезонные характеристики и изменчивость расхода;
c) доступность створа в различные времена года.

Для определения зависимости между уровнем и расходом по всей амплитуде уровней на вновь открытой станции, сначала необходимо провести значительное количество измерений расхода воды. Затем измерения расхода следует проводить периодически, чтобы следить за изменением зависимости уровня от расхода. Ежегодно рекомендуется делать не менее 10 измерений.

Первостепенное значение имеют высококачественные измерения расхода во время паводков и ледостава. Важно, чтобы в программе работ станции были предусмотрены внеплановые измерения расхода в эти периоды.

Там, где важно вести учет стока непрерывно в течение всего года, измерения расхода воды, как правило, следует проводить учащенно в периоды, когда река находится под ледяным покровом.

В периоды замерзания и вскрытия измерения следует вести как можно чаще, так как в это время наблюдается исключительная изменчивость стока. В середине зимы частота измерений расхода воды будет зависеть от климатических условий, доступности, размеров реки, характеристик зимнего стока и требуемой точности. В районах с очень холодным климатом, где расход зимой уменьшается по плавной кривой, требуется меньше измерений, чем на реках с чередующимися вскрытиями и замерзаниями.
5.4.6 Расчет среднего уровня воды измерения расхода [ГОСТ Е71]

При измерении расхода воды необходимо фиксировать уровень воды и время его измерения через такие интервалы, которые позволили бы привязать измеренные расходы к соответствующим уровням воды. Обычно в качестве расчетного уровня измеренного расхода можно принять уровень, относящийся к середине промежутка времени, в течение которого измерялся данный расход. Однако, если уровень не изменяется линейно во времени, то следует рассчитать среднезвешенный уровень за время измерения расхода с помощью следующего уравнения:

\[\bar{h} = \frac{Q_1 h_1 + Q_2 h_2 + \ldots + Q_N h_N}{Q_1 + Q_2 + \ldots + Q_N}. \] (5.15)

где \(h \) — среднезвешенный расчетный уровень; \(Q_1, Q_2, \ldots, Q_N \) — измеренные расходы воды, соответствующие уровням \(h_1, h_2, \ldots, h_N \).

5.5 РАСЧЕТ НАНОСОВ И ТВЕРДЫЙ СТОК

5.5.1 Общие положения [ГОСТ Е09]

Наносы переносятся потоком воды различным образом. Наносы могут скользить или перекатываться по дну, передвигаться скачками у дна или вымываться из русла и оставаться во взвешенном состоянии. Характер движения наносов зависит от физических характеристик (размера и формы, удельного веса и т. д.), гранулометрического состава, а также от скорости и глубины потока. В естественных потоках различны фазы переноса наносов обычно протекают одновременно и между ними нельзя провести четкой границы. Однако для удобства анализа расход наносов принято делить на две категории: на расход взвешенных наносов и расход донных (влекомых) наносов. В последние входят наносы, скользящие и перекатывающиеся по дну, передвигающиеся у дна скачками, и взвешенные наносы, которые из русла и оставляющиеся во взвешенном состоянии. Обычно в качестве расчетного уровня измеренного расхода к соответствующим уровням воды.

В батометре мгновенного типа ловушка для взятия пробы обычно представляет собой горизонтально устанавливаемый цилиндр, на обоих концах которого имеются быстро закрывающиеся клапаны, позволяющие отбирать пробы за любое нужное время и на любой глубине. Пробоотборником может быть самая простая бутылка с закрывающейся пробкой с входом различной длины, или полностью открытая. Когда бутылка открыта, то воздух в ней замещается водой, образуя пузырьки, которые постепенно замедляют наполнение бутылки. Следовательно, бутылочный батометр не является пробоотборником мгновенного типа.

Батометр насосного типа всасывает смесь воды с наносами насосом или через шланг, входное отверстие которого располагается в точке отбора пробы, регулируя скорость всасывания, оператор может получить пробу, которая характеризует содержание наносов в точке измерения. Батометр насосного типа для взятия проб взвешенных наносов, например: мгновенные, бутылочные, насосные, составные. Но только некоторые из них конструируются таким образом, чтобы скорость воды во входном отверстии была равна скорости течения потока. Соблюдение этого условия весьма важно для того, чтобы взятая проба была действительно репрезентативна для расхода наносов в месте измерения. Конструкция батометра должна предусматривать, чтобы его входное отверстие было направлено против течения, было выдвижуто вперед и находилось бы вне зоны нарушения структуры течения прибором.

Сам пробоотборник размещается в корпусе батометра. Приемник батометра состоит из выступающего носика переменного диаметра для забора пробы из потока. Сбоку в приемнике батометра предусмотреть для отбора проб взвешенных наносов, например: мгновенные, бутылочные, насосные, составные. Но только некоторые из них конструируются таким образом, чтобы скорость воды во входном отверстии была равна скорости течения потока. Соблюдение этого условия весьма важно для того, чтобы взятая проба была действительно репрезентативна для расхода наносов в месте измерения. Конструкция батометра должна предусматривать, чтобы его входное отверстие было направлено против течения, было выдвижуто вперед и находилось бы вне зоны нарушения структуры течения прибором.

5.5.2 Выбор створа

При выборе створа для измерения расхода наносов применяются те же критерии, что и при выборе створа для измерения расхода воды (разделы 5.3.2.1 и 5.4.2).

5.5.3 Измерение расхода взвешенных наносов

5.5.3.1 Приборы для взятия проб и измерительные устройства [ГОСТ Е71]

Применяются несколько типов батометров для взятия проб взвешенных наносов, например: мгновенные, бутылочные, насосные, составные. Но только некоторые из них конструируются таким образом, чтобы скорость воды во входном отверстии была равна скорости течения потока. Соблюдение этого условия весьма важно для того, чтобы взятая проба была действительно репрезентативна для расхода наносов в месте измерения. Конструкция батометра должна предусматривать, чтобы его входное отверстие было направлено против течения, было выдвижуто вперед и находилось бы вне зоны нарушения структуры течения прибором.

Сам пробоотборник размещается в корпусе батометра. Приемник батометра состоит из выступающего носика переменного диаметра для забора пробы из потока. Сбоку в приемнике батометра предусмотреть для отбора проб взвешенных наносов, например: мгновенные, бутылочные, насосные, составные. Но только некоторые из них конструируются таким образом, чтобы скорость воды во входном отверстии была равна скорости течения потока. Соблюдение этого условия весьма важно для того, чтобы взятая проба была действительно репрезентативна для расхода наносов в месте измерения. Конструкция батометра должна предусматривать, чтобы его входное отверстие было направлено против течения, было выдвижуто вперед и находилось бы вне зоны нарушения структуры течения прибором.

Сравнительно новым методом определения расходов взвешенных наносов в точке является применение оптических или ядерных измерителей. Принцип работы этих приборов основан на том, что видимое излучение рентгеновских лучей (X-лучей), испускаемое...
источником с постоянной интенсивностью, рассеивается и/или поглощается частицами взвешенных наносов. Уменьшение интенсивности, измеряемое фотоэлектрическим или ядерным детектором, расположенным на противоположной стороне от источника, пропорционально концентрации наносов при условии, что другие сопутствующие характеристики воды и наносов (растворенные химические и минеральные вещества и т. п.) остаются неизменными.

Общая конструкция батометра должна быть проведена путем равномерного перемещения его в стоячей воде с заданной скоростью или путем помещения его в поток воды с известной скоростью. Оптические и ядерные измерители должны быть откалиброваны путем отбора проб в лотках или естественных потоках с наносами параллельно с измерениями батометрами другого типа.

5.5.3.2 Порядок измерений

Пробы взвешенных наносов на реках берутся в тех же створах, в которых измеряется расход воды, но обязательно в скоростных вертикалях. На озерах вертикали для отбора проб взвешенных наносов располагаются по всей площади, потому что здесь измерения обычно выполняются для определения распределения концентраций наносов во времени и пространстве. Батометры подвешиваются в воде на штанге или тросе.

На реках применяются два метода измерения расходов, которые дают сравнимые результаты:

- равное приращение расхода (РПР). Выбранное поперечное сечение разделяется на 3–10 участков с примерно одинаковым расходом воды. В центре каждого участка на одной вертикали берется интегральная проба путем опускания батометра с равномерной скоростью от поверхности до дна и наоборот. В результате получается пробы, взвешенные по расходу наносов на каждом участке;

Пробы могут отбираться в точках, равномерно распределенных по вертикали, каждой полученной при этом пробе придается вес, равный отношению скорости течения в данной точке к средней скорости на вертикали. На практике этот метод измерения расхода наносов объединяется с измерением расхода воды (раздел 5.3.2.4), так как вертикали для измерения скорости течения и для отбора проб взвешенных наносов совпадают.

Оптические и ядерные измерители наносов могут применяться как для точечных, так и для интегральных измерений, если электрические сигналы, подаваемые детектором, суммируются счетчиком импульсов. В зависимости от статистических характеристик счетчика импульсов конкретного устройства, период счета колеблется от трех до пяти минут.

5.5.3.3 Определение концентрации наносов

Пробы взвешенных наносов обычно обрабатываются и анализируются в специальных лабораториях для определения концентрации наносов. Для этого обычно используются выпаривание, фильтрование и процеживание. Обычно метод фильтрования применяют для проб со средней и высокой концентрацией. В свою очередь, метод процеживания подходит лишь при высокой концентрации (WMO, 1989). Пробы обычно отстаиваются в течение 1–2 дней, потом в них отдельны наносы путем выпаривания или фильтрования, которые затем сушатся при температуре около 110 °С и взвешиваются. Если наносы отделялись от воды выпариванием, то должна входить поправка на испарение. Концентрация взвешенных наносов — это вес сухого наноса, содержащегося в единичном объеме наносо-водной смеси, который выражается в г∙м⁻³ или кг∙м⁻³.

В некоторых странах стандартные батометры имеют емкости в 1 литр и менее. В этом случае необходимо повторять отбор проб до тех пор, пока не будет получен рекомендуемый объем пробы (ISO, 1977b).

При использовании оптического или ядерного измерителя концентрация наносов в точке определяется по калибровочным кривым этих приборов на основе отношения интенсивности светового или Х-излучения, полученного в пробе, к интенсивности излучения в чистой воде.

5.5.3.4 Расчет расхода взвешенных наносов

По первому методу измерений (РПР) средневзвешенная концентрация наносов \(c_s \) (выраженная в кг∙м⁻³) для всего поперечного сечения рассчитывается по формуле:

\[
\begin{align*}
\tau_{eq} &= \frac{\sum c_s q_p}{\sum q_p}, \\
\end{align*}
\]
(5.16)

где \(q_p \) — частичный расход воды на участке поперечного сечения, м³∙с⁻¹; \(c_s \) — концентрация наносов по вертикали в центре участка, кг∙м⁻³ (ISO, 1977b).

ГЛАВА 5. КОЛИЧЕСТВО ПОВЕРХНОСТНЫХ ВОД И ИЗМЕРЕНИЕ НАНОСОВ

1.5-27
По второму методу измерения (РСП) содержание наносов, определяемое по пробе, в состав которой входят пробы, взятые на всех выбранных вертикалях, представляет собой среднюю концентрацию наносов в створе измерения. Ежедневный расход взвешенных наносов \(Q_s \) рассчитывается по формуле:

\[
Q_s = \bar{c} Q,
\]

где \(Q \) — расход воды, \(m^3 \cdot c^{-1} \); \(Q_s \) — расход взвешенных наносов, \(kg \cdot c^{-1} \).

5.5.3.5 Непрерывный учет расхода взвешенных наносов

Непрерывный учет расхода взвешенных наносов можно осуществлять, используя непрерывные данные по речному стоку, а также путем систематического отбора проб на содержание наносов. В период межени пробы берутся один раз в сутки, в период паводков — более часто. Наиболее ценную информацию об изменении во времени содержания наносов и их максимальных значениях в период паводков можно получить по непрерывной записи сигналов, поступающих от оптических или ядерных измерителей взвешенных наносов. Максимальное содержание наносов обычно предшествует пике павода, причем на графиках связи расхода воды и расхода взвешенных наносов можно наблюдать петли, подобные петлям кривых расхода в паводочные периоды.

Пробы или записи наблюдений собираются по отдельным вертикалям поперечного сечения, лучше всего использовать интегральный по глубине метод. По детальным измерениям распределения наносов в поперечном сечении (см. в разделе 5.5.3.2) устанавливается зависимость между содержанием наносов на данной вертикали и во всем створе. Эта зависимость необязательно является линейной и постоянной как на протяжении всего года, так и не во всем диапазоне колебаний содержания наносов.

5.5.3.6 Использование методов дистанционного зондирования

Определение количества наносов в воде основано на коэффициенте отражения в видимой и инфракрасной областях электромагнитного спектра (WMO, 1972). Как правило, отражение является нелинейной функцией концентрации взвешенных наносов с максимальным коэффициентом отражения, зависящим от длины волны и концентрации наносов. Поскольку мутность и взвешенные наносы тесно связаны в большинстве водных тел, то также может быть выполнена оценка мутности. Ограничением для применения этого метода является тот факт, что для тарировки отношения требуются данные полевых наблюдений. В дальнейшем данные со сканера могут быть использованы без тарированных данных для картирования относительных концентраций взвешенных наносов в речных струях и для получения выводов об особенностях расположения наносов в озерах и устьях. Хорош обзор применения методов дистанционного зондирования для оценки взвешенных наносов можно найти у Деккера и др. (Dekker and others, 1995).

5.5.4 Измерение расхода донных наносов

5.5.4.1 Приборы [ГОСТ С12]

Полевые измерения расхода донных наносов представляют определенные трудности в связи со стохастической природой перемещения донных наносов, а также тем, что донные отложения передвигаются в виде перекатов, песчаных баров и гряд. Ни один из разработанных приборов в полной мере не отвечает требованиям оценки эффективности при улавливании наиболее крупных и мелких частиц наносов, сохранения устойчивого положения при ориентировании по течению придонного потока без внесения искажений в него и в движение донных наносов. Существующие приборы для измерения донных наносов можно разделять на три типа: батометры-корзинки, батометры-ловушки и батометры, основанные на разности давлений на входе и выходе. Некоторые из них могут быть использованы для тарировки приборов (Emmett, 1981).

Батометры-корзинки обычно изготовляются из сетчатого материала с отверстием в верхнем конце, через которое поступает смесь воды с наносами. Сетчатый материал должен пропускать взвешенные наносы, но удерживать наносы, движущиеся по дну.

Батометры-ловушки обычно в продольном разрезе имеют форму клина и располагаются на дне такого размера, что строек клина обращено против течения. Ловушка имеет прорези или щели для задержания движущихся наносов.

У батометров, действие которых основано на разности давления, создается пониженное давление при выходе из прибора, достаточное для преодоления потеря энергии и для создания скорости течения воды при входе в прибор, равной скорости течения в ненарушенном потоке. Диафрагма с отверстиями внутри корпуса пробоотборника вынуждает поток оставаться ненарушенным по дну — выходить через верхнее отверстие.
Для каждого типа батометров необходимо определить коэффициент эффективности из-за различных неопределенностей, возникающих при отборе проб. Батометры обычно тарируются в лабораторных лотках, в которых можно непосредственно измерить расход донных наносов в отстойнике, помещенном в конце лотка, даже если трудно поддерживать однородные условия перемещения наносов по ширине и длине лотка. Коэффициенты эффективности измерения донных наносов трудно оценивать даже при благоприятных условиях, поскольку они зависят от гранулометрического состава наносов, степени наполнения пробы отборника и др. В связи с этим эффективность в 60–70 % может считаться удовлетворительной.

5.5.4.2 Порядок измерения

Расход донных наносов определяется количеством наносов в единицу времени, собранных батометром в одной или более точках на дне речного потока. В поперечном сечении реки обычно должно быть от 3 до 10 точек измерений. При определении точек отбора проб следует учитывать, что, за исключением периода паводков, перемещение донных наносов происходит только в части ширины реки.

Включение измерения с нулевым значением в расчет расхода донных наносов может приводить к ошибкам в результатах расчета, даже если эта точка измерения располагалась между двумя перемещающимися грядами наносов. Погрешности могут также возникать, если измеренную скорость перемещения наносов распространить на участки поперечного сечения реки с низкими и нулевыми скоростями перемещения.

В потоках, имеющих гравийное русло, для которых наиболее характерно перемещение наносов по отдельным сегментам поперечного сечения, для решения этой проблемы существенную помощь могут оказать акустические детекторы различного типа. Находясь вблизи дна потока, эти детекторы отбирают звуки перемещающегося гравия, указывая на движение донных наносов. Кроме того, интенсивность звука и скорость перемещения донных наносов могут иметь корреляционную связь.

Батометры (см. пример на рисунке I.5.6) опускаются на дно и удерживаются в нужном положении на штанге или тросе. Измерение обычно продолжается несколько минут в зависимости от размеров батометра и скорости перемещения наносов. При малых скоростях течения у дна горизонтальная составляющая действующей силы уменьшается, батометр может погружаться в ложе и зачерпывать отложения, не являющиеся донными наносами. Аналогичные явления могут происходить при реком и неосторожном опускании батометра.

Измерения расхода наносов необходимо проводить при различных расходах воды, чтобы установить связь между расходом воды и расходом донных наносов. Из-за высокой сложности механизма изучаемого процесса, вероятностной природы перемещения наносов и возможных погрешностей отбора проб, одна единственная проба в точке измерения может пригодиться к весьма неопределенной оценке истинного перемещения наносов. Поэтому в каждой точке необходимо проводить несколько отборов проб. Число повторных измерений зависит от местных обстоятельств. Однако статистический анализ полевых данных, полученных при 100-кратных повторных измерениях, показал, что расход донных наносов может быть измерен только с ограниченной точностью, если в каждой точке не будет взят но ограниченному большему числу проб.

5.5.4.3 Расчет расхода донных наносов

Наносы, собранные батометром, высушивают и взвешивают. Разделив сухой вес наносов на время, потребованное для взятия пробы, и на ширину приемного отверстия батометра, получают расход донных наносов на единицу ширины реки q_b. Кривая распределения элементарных расходов по ширине реки q_b строится по данным измерений в каждой точке. Площадь, заключенная между этой кривой и линией поверхности воды, представляет собой суточный расход донных наносов по всему поперечному сечению Q_b. Величина Q_b может также рассчитываться на основании измеренных q_b данных следующим образом:

\[Q_b = \sum_{i=1}^{n} q_b x_i \]

где Q_b — расход донных наносов, кг·с⁻¹; q_b — элементарный расход, кг·с⁻¹; и x — расстояние в метрах.
Переменная величина х представляет собой расстояние между точками измерения или между начальной точкой измерения и кромкой воды, или применение полос передвижения наносов.

Плотины, задерживающие большую часть донных наносов, влекомых на участках верхнего бьефа, дают возможность оценить расход наносов за год или за сезон. Для этой цели в водохранилище выбираются профили для измерения и вычисления объемов отложившихся наносов. Этот метод, в сочетании с регулярными отборами проб в верхнем и нижнем бьефах, может дать приемлемые оценки расходов донных наносов.

5.5.4.4 Непрерывный учет расхода донных наносов

Непрерывный учет расхода донных наносов может осуществляться по связи расхода донных наносов с расходом воды или другими гидравлическими переменными, за которыми ведутся наблюдения. Можно предположить, что для расхода воды такая связь приближается к линейной, выше некоторого предельного значения расхода воды, соответствующего началу движения наносов, поскольку транспортирующая способность потока прямо пропорциональна его расходу воды. Перемещение донных наносов представляет основной интерес во всех исследованиях, касающихся вопросов изменения и деформации речных руслей.

Ссылки и дополнительная литература

 Прокачева В.Г., 1975 г.: Оценка пригодности телевизионной информации метеорологических ИСЗ «Метеор» для определения ледовой обстановки на озерах и водохранилищах. Труды Государственного гидрологического института (ГГИ), № 205, сс.115–123, Санкт-Петербург.

Всемирная Метеорологическая Организация, 2006 г.: Технический регламент (ВМО-№ 49), том III — Гидрология, Женева.

Smith, W., 1974: Experience in the United States of America with acoustic flowmeters. Proceedings of Symposium on River Gauging by Ultrasonic and Electromagnetic Methods, 16–18 December 1974, Water Research Centre, Department of the Environment, Water Data Unit, University of Reading.

Подземные воды залегают под большей частью земной поверхности. Во многих областях они являются важным источником водоснабжения и поддерживают водоснабжение рек. Для того чтобы понять полную протяженность гидрологической системы, необходимо понять систему подземных вод (Fetter, 1994; Freeze and Cherry, 1979). Целью этой главы является рассмотрение основных понятий и практик, необходимых для выполнения оценки ресурсов подземных вод. Как правило, оценка ресурсов подземных вод складывается из нескольких ключевых компонентов:

a) определение типов водоносных слоев и их распространение в области исследования;
b) оценка пространственных и временных колебаний уровней подземных вод (параметрическая поверхность) для каждого водоносного слоя, обусловленных естественными и антропогенными факторами. Сооружение колодцев и измерение уровней воды облегчают решение этого вопроса;
c) оценка величины и распределения гидравлических свойств, таких как пористость и проницаемость, для каждого водоносного слоя. Это является требованием для любого типа количественной оценки;
d) понимание процессов, способствующих или препятствующих пополнению запасов подземных вод или формированию стока с каждого водоносного слоя. Сюда входят эффективное количество осадков, достигающих слоя грунтовых вод, суммарное испарение в слое грунтовых вод, природа взаимодействия подземных и поверхностных вод, а также местоположение и количество расхода воды из источников и выкачиваемых колодцев;
e) интеграция данных о подземных водах с целью подтверждения информации из разных источников, понимания относительной значимости различных процессов для системы подземных вод и оценки способности или возможности системы подземных вод соответствовать общим или конкретным целям (обычно водоснабжения). Этому может способствовать разработка средств прогнозирования, используя различные аналитические методы — от водного баланса до компьютерного цифрового моделирования потока подземных вод.

6.2.1 Водоносные геологические образования

Водоносные геологические образования состоят из рыхлых отложений или плотных скальных пород. Вода находится либо в щелях, либо в пустотах. Отношение пустот к общему объему твердого тела называется пористостью. Взаимосвязь поровых пустот определяет течение потока воды. Когда пустоты полностью наполнены водой, образование называют насыщенным. И наоборот, когда пустоты наполнены водой не полностью, образование является ненасыщенным.

6.2.1.1 Рыхлые отложения

Большинство рыхлых отложений состоит из материала, полученного вследствие разлома плотных скальных пород. По размеру этот материал может быть от долей миллиметра (размер частиц глины) до нескольких метров (валуны). Рыхлые отложения, важные для гидрологии подземных вод, включают в себя (в порядке возрастания размера частиц) глину, ил, песок и гальку.

6.2.1.2 Плотные скальные породы

Плотные скальные породы состоят из минеральных частиц, которые были спрессованы в твердую массу за счет температуры и давления или в результате химической реакции. Такие породы называются подстилающими. Они включают в себя осадочную породу, которая изначально была рыхлой, вулканическую породу, сформированную из расплавленного состояния, и метаморфическую породу, которая претерпела изменения под воздействием воды, температуры или давления. Подземные воды в плотных скальных породах могут существовать и протекать в пустотах между минеральными или осадочными частицами. Кроме того, значительные пустоты и каналы для подземных вод в плотных породах являются трещинами или пустотами, которые могут быть как микроскопическими, так и мегаскопическими, появившимися в результате разложения. Пустоты, которые были образованы в то же время, что и порода, такие как межзеренные пустоты, относятся к первичным пустотам (рисунок 1.6.1). Пустоты, образовавшиеся после образования породы, такие как трещины или каналы растворения, относятся к вторичным пустотам (рисунок 1.6.1). Плотные осадочные породы, существенные
для гидрологии подземных вод, включают в себя известняк, доломит, глинистый сланец, алеврит и смеси. Вулканическая порода включает в себя гранит и базальт, а метаморфическая — филлит, аспидный сланец и гнейс.

6.2.1.3 Водоносные слои и водоупоры

Водоносный слой — это насыщенная горная порода или отложение, которое пропускает достаточное количество воды для того, чтобы считаться источником водоснабжения. Ограничивающий слой — это пласт горных пород или отложений, который задерживает движение воды, не пропуская необходимое для использования количество воды к скважинам или источникам. Ограничивающий слой иногда может рассматриваться как слабопроницаемый для воды слой или как водоупор. Слабопроницаемый слой является насыщенным слоем, который пропускает незначительное количество воды по сравнению с водоносным слоем, но через который возможна существенная течь. Водоупор представляет собой насыщенный слой, который попускает незначительное количество воды и через который движение воды ничтожно мало (Walton, 1970).

6.2.1.4 Ограниченные и неограниченные водоупором водоносные слои

В неограниченном водоносном слое подземные воды лишь частично наполняют водоносный слой, и верхняя поверхность воды может свободно пониматься и опускаться. Безнапорный водоносный слой или поверхностный водоносный слой считаются стратиграфически самыми верхними неограниченными водоносными слоями. Ограниченные водоносные слои полностью заполнены водой и ограждены водоупорами снизу и сверху. Сопротивление течению сквозь водоупор может привести к подъему уровня воды в скважине выше уровня водоносного слоя и, возможно, выше уровня земли. Результатом этой ситуации могут быть скважины с естественным течением. Ограниченные водоносные слои также называют артезианскими водоносными слоями.

6.2.2 Разработка гидрогеологической сети [ГОСТ C67]

Информация о водоносных слоях и скважинах должна быть организована и интегрирована для определения горизонтальной и вертикальной протяженности

Рисунок I.6.1. Примеры водоносных отложений горных пород с первичным (межзерновым) и вторичным (трещинным и растворенным) поровым пространством (Heath, 1983)
вононосных слоев и водоупоров. На этой основе могут быть определены такие характеристики, как направление подземного потока и воздействие гидрогеологических границ. Компликация горизонтальной и вертикальной протяженности вононосных слоев и воноупоров часто называется гидрогеологической сетью. Чтобы быть полезной, сеть должна базироваться, насколько это возможно, на фактических данных о существовании, ориентации и протяженности каждого вононосного слоя и ограничивающего слоя. Если фактические данные недоступны, то следует полагаться на абстрактные представления о подземных условиях.

Разработка гидрогеологической сети требует точного представления, в буквальном смысле, подземных условий. Разработка гидрогеологической сети требует точного представления о подземных условиях. Если фактические данные недоступны, то следует полагаться на абстрактные представления о подземных условиях.

Чтобы быть полезной, сеть должна базироваться, насколько это возможно, на фактических количественных характеристиках каждого вононосного слоя и ограничивающего слоя. Если фактические данные недоступны, то следует полагаться на абстрактные представления о подземных условиях.

6.2.2.2 Журналы бурильщиков и геологов
Информация о природе подземных материалов может содержаться в записях о сооружении скважин, шахтных стволов, туннелей и котловин, а также в описании геологических пород и пещер. Особенность полезна для изучения подземных вод записи об условиях, имеющих место в процессе бурения скважины. Они могут быть сделаны бурильщиком или геологом на месте в ходе извлечения выбуренной породы на поверхность и исследования основных образцов грунта. Журнал бурильщика или геолога (в зависимости от того, кто подготовил информацию) содержит подробный регистрирующий рассказ о типах материалов, обнаруженных в процессе бурения. Кроме того, подобные журналы могут содержать такие замечания, как относительная легкость или сложность бурения, сравнительный темп продвижения и количество обнаруженной воды.

6.2.2.3 Скважинные геофизические методы
Скважинные геофизические записи являются обще-принятым подходом для изучения подповерхностных условий. Зонд опускается на трое в колодец или необъяснную скважину. По мере подъема или спуска зonda установленный на нем датчик измеряет конкретное свойство или ряд свойств. Эти данные передаются на поверхность в качестве цифрового или аналогового сигнала, который потом обрабатывается и записывается оборудованием на поверхности. Данные обычно выводятся в виде ленточной диаграммы, которая и представляет собой журнал. Эти измерения более объективны, чем журнал геолога или образцы выбуренной почвы, и предоставляют большую последовательность среди многочисленных источников данных. Таблица I.6.1 дает общее представление о скважинных геофизических методах, обычно использующихся в исследованиях грунтовых вод: скважинный профиломер, удельное сопротивление, включая спонтанный потенциал (СП), записи излучения, в том числе естественного гамма-излучения, а также температура скважины и скважинное течение (Keys and MacCary, 1971).

6.2.2.4 Гидростратиграфическая корреляция
Интеграция гидрогеологической информации, собранной с сети отдельных скважин, поверхностных геофизических надрезов и геологических обнаженных пород для выработки крупномасштабного понимания горизонтальной протяженности вертикальной природы вононосных слоев и воноупоров в зоне называется гидрогеологической сетью и основывается на корреляции этих данных из разных участков. Корреляция в данном случае является демонстрацией эквивалентности объектов, наблюдаемых на разных участках. Сут проблемы для специалиста заключается в определении того, соединен ли вононосный слой, обнаруженный на одном участке, с другими, обнаруженными на разных участках (или эквивалентными им). Сталкиваясь с этой проблемой, геологи сосредотачивают свое внимание на объектах или породах эквивалентного возраста. В то же время гидрогеологи заинтересованы эквивалентностью с гидрогеологической точки зрения, которая может выходить за пределы типа пород или геологического возраста. Надежность и точность итоговой гидрогеологической сети прямо связаны с концентрацией скважин и
Таблица I.6.1. Обзор скважинных геофизических методов, используемых при исследовании подземных вод

<table>
<thead>
<tr>
<th>Тип метода</th>
<th>Измеряемое свойство</th>
<th>Применение</th>
<th>Ограничения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кавернометр</td>
<td>Диаметр скважины или колодца; соотношение диаметра и глубины скважины</td>
<td>При использовании в скважине без обсадки он показывает природу подповерхностных горных пород; когда скважина проходит через слабоуплотненные и рыхлые горные породы, она размывается, и ее диаметр увеличивается. В уплотненных породах этот метод может выявить размещение зон разломов. Он может помочь обнаружить достаточно большой разлом или косвенно указать на наличие зоны разлома с помощью увеличения диаметра скважины в результате вымывания хрупких пород.</td>
<td>Кавернометр обладает наибольшим записывающим диаметром.</td>
</tr>
<tr>
<td>Температурный</td>
<td>Температура; соотношение температуры и глубины</td>
<td>Используется для изучения источника воды и перемещения воды между водоносными горизонтами. Зачастую записывается в сочетании с другими методами, например электрическим, для того чтобы упростить определение факторов температурной компенсации.</td>
<td></td>
</tr>
<tr>
<td>Электрический</td>
<td>Измерения электрического сопротивления или электропроводности одного электрода</td>
<td>Одноэлектродные измерения позволяют получить измерения потенциала самопроизвольной поляризации и сопротивления. Измерения потенциала самопроизвольной поляризации представляют собой запись потенциалов природного постоянного тока, существующих между подповерхностными породами и неподвижным электродом на поверхности, которые изменяются в соответствии с природой пересеченной постели породы. Потенциал водоносного слоя, содержащего соленую или солоноватую воду, обычно отрицательный по отношению к связанному глине или сланцу, вместе с этим, потенциал пресноводного водоносного слоя может быть как положительным, так и отрицательным, но и с меньшей амплитудой, чем для соленой воды.</td>
<td>Электронный метод не может быть применен в обсаженных скважинах. Необходимо получить удовлетворительные данные, если поблизости находится электростанция, распределительное устройство и похожие установки. Зонд должен соединяться с боковой стенкой скважины. Это может быть сложно в скважинах большого диаметра.</td>
</tr>
</tbody>
</table>

Измерения сопротивления представляют собой запись колебаний в сопротивлении между неизменным переменным током с частотой 60 Гц, действующим на зонд, и неподвижным электродом на поверхности. Сопротивление меняется от одной горной породы к другой, поэтому это можно использовать для определения границ пластов, некоторым характеристикам постелей пород и иногда для качественной оценки внутрипоровых вод. Для одноэлектродного метода требуется намного менее сложное оборудование, чем для других методов. Полученные данные могут быть с легкостью интерпретированы, они могут позволить определить границу водоносного слоя рядом с нормальным уровнем и толщину пласта, если она больше одной трети метра (1 фут). Получить истинное удельное сопротивление нельзя, можно только определить относительную величину сопротивления каждого пласта. При помощи достаточных данных наблюдений с однородной площади иногда возможно количественно интерпретировать записи относительных величин, касающихся качества воды в различных водоносных слоях.

(продолж.)
В разделе 6.

<table>
<thead>
<tr>
<th>Тип метода</th>
<th>Измеряемое свойство</th>
<th>Применение</th>
<th>Ограничения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Электрический (продолж.)</td>
<td>Измерения электрического сопротивления или электропроводности нескольких электродов</td>
<td>Многоэлектродный метод заключается в измерении потенциала самопроизвольной поляризации и двух или более измерений сопротивления. Метод измерения потенциала самопроизвольной поляризации идентичен однорядному методу. Измерения сопротивления показывают изменения потенциала с глубиной заданного 60 Гц переменного тока между электродами, расположенными на разных расстояниях от зонда. Общепринятые размещения электродов: «короткое-нормальное» от 0,4064 до 0,4572 м (от 16 до 18 дюймов); «длинное-нормальное» от 1,6256 м (64 дюйма) и «длинное-поперечное» 5,6896 м (18 футов, 8 дюймов). Радиус исследования над скважиной зависит от размещения. Каротажный прибор состоит из зонда с двумя или более электродами, расположенными на различных расстояниях, поддерживаемого многожильным кабелем, ведущим к записывающему устройству, генератора переменного тока и электрода, прикрепленного к записывающему устройству и заземленному на поверхности для того, чтобы завершить цикл сопротивления потенциала самопроизвольной поляризации, а также провода, катушки и лебедки и прочего подобного необходимого оборудования.</td>
<td></td>
</tr>
<tr>
<td>Радиационный</td>
<td>Радиация от природных материалов, обычно гамма-излучение</td>
<td>Практически во всех скважинах содержатся радиоактивные породы. Глина и сланец обычно в несколько раз более радиоактивны, чем песчаник, известняк и доломит. Гамма-лучевой метод заключается в построении кривой радиации с глубиной до интенсивности природной радиации, он представляет особую ценность для определения залежей глины и других высокорадиоактивных пород. Радиацию можно измерять через обсадку скважины, поэтому этот метод применяется для определения границ пластов в обсаженной скважине. Он также может использоваться в сухой обсаженной или необсаженной скважине.</td>
<td>Особое внимание нужно уделять транспортировке, использованию и хранению зонда, содержащего радиоактивный источник. Для этого может потребоваться специальный разрешение.</td>
</tr>
<tr>
<td>Скважинный поток</td>
<td>Скорость потока; мгновенная или кумулятивная скорость потока на глубине</td>
<td>Нейтронные записывающие устройства включают в себя нейтронный источник радиации и счетчик, они используются при определении наличия воды и проницаемости породы. Механические или электрические измерители потока улавливают изменения скорости потока в скважине. Когда во время каротажа воду выкачивают из скважины, можно измерить изменения в роли потока. Можно определить основные источники воды для скважины (зоны разломов, песчаное русло и т. д.). Измерители потока, основанные на тепловом импульсе, больше всего подходят для низких скоростей.</td>
<td>Можно использовать только в скважинах, заполненных водой, или колодцах.</td>
</tr>
</tbody>
</table>
Сейсмический

Измеряется скорость звуковых волн. Распространение и скорость сейсмических волн зависят от плотности и эластичности подповерхностных пород, они возрастают в зависимости от степени отвердевания или цементации.

Электрического сопротивления

Горные породы можно дифференцировать по их электрическому сопротивлению. Оно тесно связано с содержанием влаги в породе и ее химическими свойствами, например соленостью. Сухой гравий и песок обладают большим сопротивлением, чем насыщенный гравий и песок; сопротивление глины и сланца очень низкое.

Прямой или низкочастотный переменный ток посылается через поверхность между двумя металлическими электродами. На других электродах измеряются текущий потенциал и результирующий потенциал. Для глубинного зондирования электроды продвигаются дальше и дальше. В результате увеличения расстояния ток постепенно проникает все глубже. Сопротивление постоянно возрастает. Объема земли измеряется и получается график зависимости напряжения от расстояния между электродами.

Применяют к большим и мелким площадям, широко используется в исследовании подземных вод из-за реакции на условия влажности. Оборудование является портативным, и этот метод является более приемлемым, чем взрывные работы, которые проводятся в сейсмических методах. Метод сопротивления не применяют вблизи линий электропередач и металлических конструкций.
Глава 6. ПОДЗЕМНЫЕ ВОДЫ

Таблица 1.6.2 (продолж.)

<table>
<thead>
<tr>
<th>Методы</th>
<th>Свойство</th>
<th>Подход</th>
<th>Применение и ограничения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гравиметрический</td>
<td>Изменения значений силы тяжести являются следствием различий в плотностях подповерхностных пород разных типов.</td>
<td>Сила тяжести измеряется на станциях вдоль линий разреза или сетки.</td>
<td>Оборудование легкое и портативное, в полевых условиях работает относительно быстро. Необходима коррекция высоты. Гравиметрическая съемка представляет собой ценный инструмент для исследования общих особенностей, таких как глубина залегания основной породы, старые эрозионные особенности основной породы и другие особенности, как например закопанные интрузивные тела. Этот метод применим для больших и маленьких площадей. Результаты этого метода менее детальные, чем полученные с помощью сейсмического метода или метода сопротивления.</td>
</tr>
<tr>
<td>Магнитный</td>
<td>Магнитные свойства пород влияют на магнитное поле Земли; например, многие базальты обладают более сильными магнитными свойствами, чем кислотные вулканические породы.</td>
<td>Сила и вертикальная составляющая магнитного поля Земли измеряются и изображаются на графике. Анализ результатов позволяет качественно определить глубину основной породы и наличие закопанных каналов, селевых потоков и других похожих явлений.</td>
<td>Магнитные методы являются быстрыми и низкозатратными для сбора ограниченного количества информации о подповерхностных условиях. Результаты, полученные с помощью этого метода, менее детальные по сравнению с результатами, полученными с помощью сейсмического метода или метода сопротивления. Больше всего он подходит для широко очерченной площади бассейна подземных вод.</td>
</tr>
</tbody>
</table>

информацией по надрезам. В областях сложного геологического строения и топографии требуется сравнительно большая частота данных, чем в простых областях.

Суть подхода состоит в идентификации уникальных литологических или гидравлических особенностей, которые прямо связаны с водоносным слоем или водоупором на одном участке. Такой особенностью может быть, например, присутствие некоего слоя с особенным составом или цветом внутри или рядом с водоносным слоем или водоупором, который мы изучаем. Это называется меткой. Указание такой уникальной характерной черты специфического слоя в геофизическом журнале скважины также может помочь. После обнаружения такой метки данные, относящиеся к конкретной скважине или участку, а также данные из близлежащих скважин проверяются на предмет присутствия той же метки. Из-за существующих различий в методах геологии и топографии глубина, на которой находят метку, может отличаться. Если метка идентифицирована, то это служит знаком,
что водоносный слой или водоупор в этом месте соответствует с изначальным, и значит водоносный слой или водоупор расположен непрерывно между двумя скважинами. Если эту метку не удалось обнаружить в близлежащих точках, имеющиеся данные должны быть перепроверены на предмет других возможных корреляций. Невозможность обнаружить корреляцию и определить протяженность может означать ошибку, складку или какой-нибудь тип стратиграфического разлома. Знание геологических особенностей исследуемой области и механизмов ее влияния на протяженность и расположение водоносных слоев и водоупоров имеет важное значение. Может быть необходимо проконсультироваться с геологами, знакомыми с областью для продолжения работы. Вне всякого сомнения, геологические сложности и вероятная неуникальность метки могут привести к ошибкам выводам.

6.3 НАБЛЮДАТЕЛЬНЫЕ СКВАЖИНЫ

6.3.1 Установка наблюдательных скважин

С давних времен в водоносных образованиях выкапывались колодцы. Существующие колодцы могут использоваться в качестве наблюдательных скважин за уровнем подземных вод, если глубина воды в колодце превышает максимальные сезонные колебания уровня подземных вод, и известна геологическая структура местности. Следует обследовать существующие колодцы и установить, какие из них могут использоваться как наблюдательные скважины. Существующие скважины для откачки воды также могут быть включены в наблюдательную сеть, если кольцеобразный зазор между наружными обсадными трубами и трубой насоса оказывается достаточным для опускания измерительной ленты или трюса при определении уровня стояния воды. Если насосная скважина используется в качестве наблюдательной, то уровень воды в ней должен измеряться после того, как насос будет отключен на сравнительно длительное время, достаточное для восстановления уровня воды в ней до естественного состояния. Отвод воды в окрестности скважины также должен прерываться на достаточно длительный период времени, чтобы конус депрессии, вызванный откачивой воды вблизи скважины, мог восстановиться. Бурение новых скважин связано с дополнительными затратами, поэтому необходимо очень тщательно планировать наблюдательную сеть.

Если в каком-либо водоносном слое, не имеющем связи со слоями, расположенными на других отметках, уже действуют несколько скважин по откачке воды, предпочтение следует давать установке специальной наблюдательной скважины, расположенной достаточно далеко от существующих, которые могут оказывать на нее влияние. Основное преимущество колодцев заключается в том, что они могут сооружаться вручную местными рабочими. Обычно колодцы имеют глубину от 3 до 15 м, но глубина колодцев может достигать 50 м и более. Выкопанные колодцы облицовываются камнем, кирпичом или бетонными блоками. Для того чтобы обеспечить поступление воды из водоносного слоя, в стенах оставляют открытыми несколько отверстий и отбивают внутренние углы блоков или кирпичей.

При выемке грунта ниже отметки воды желательно применять насос, чтобы предотвратить оползание стенок под действием воды. При отсутствии насоса, производительность которого соответствует расходу поступающей воды, можно продолжать углубление колодца с помощью буровых установок. Технология выемки грунта до уровня воды с последующим бурением широко практикуется в различных частях света. В окончательном виде скважина должна иметь защиту от дождя и поступления поверхностных вод, которые могут загрязнять воды в скважине, и, следовательно, в водоносном слое. Кирпичная кладка должна иметь высоту не менее 0,5 м над поверхностью земли. В целях безопасности на огорожке скважины устанавливается водонепроницаемая крышка с открывающейся дверкой. Вблизи верхней крышки должна отчетливо различаться отметка начала отсчета (привязанная к общей системе отсчетов), от которой будет измеряться расстояние до уровня воды.

Если уровень воды не опускается ниже 5–15 м от поверхности земли, наблюдательная скважина сооружается, как правило, с помощью ручного бурения. Ручные буры могут применяться для сооружения скважин диатетром 50–200 мм в глинах и супесях некоторых видов, которые не оседают без креплений. При бурении скважины ниже отметки грунтовых вод в несвязанных песках, обсадную трубу можно опустить на дно сделанной выемки, а далее продолжать бурение бортом меньшего диаметра. Чтобы скважина была глубже, вынутый грунт можно удалять черпаком.

В районах с подробными сведениями о геологической структуре грунта, состоящего из несвязанных песков, осадочных отложений или глин, могут сооружаться наблюдательные скважины малого диаметра глубиной до 10 м. Эти скважины бурятся вращающейся насадкой, закрепленной на нижнем конце стальной трубы, которая составляет из натяжного соединения нескольких секций. Причем одной из секций является сетка (фильтр), представляющая собой просверленную трубу, упакованную в проволочную
Глава 6. Подземные воды

сетку, защищенную дырчатым латунным листом. Пробуренные скважины диаметром 35–50 мм отвечают требованиям наблюдательных скважин.

Для того чтобы проникнуть в глубокие водоносные слои, скважины бурятся с помощью вращательного бурового или ударного станка. Обычно наблюдательные скважины устанавливаются с внутренним диаметром 50–150 мм, так как бурение скважин малого диаметра дешевле. Для этих целей часто используется гидравлический буровой станок с диаметрами труб от 115 до 165 мм. Бурение с помощью вращательного бурового станка является более быстрым, чем ударный метод, в осадочных образованиях, содержащих булыжники, сланцы и гальку.

Так как кусочки скальной породы удаляются из скважины постоянной струей буровой жидкости, то, по мере углубления в грунт, через определенные интервалы проходки, берутся пробы удаляемой породы. Это осуществляется путем бурения до самого дна пробы, буровая жидкость круговым движением вымывает все кусочки, и бурение повторяется через определенные интервалы с удалением кусочков из пробы. Опытные гидрогеологи и бурильщики при помощи тщательного наблюдения за скоростью и эффективностью бурения могут обнаруживать изменения в характеристиках породы и определять необходимость дополнительных проб.

Ударный метод бурения скважин предпочтительней в трещиноватых скальных или других породах с большой проницаемостью. Обычно диаметр скважины, прокладываемых ударным методом, колеблется от 100 до 200 мм, таким образом после установки облицовочных стенок, наблюдательная скважина имеет диаметр 50–150 мм. При ударном методе также осуществляется отбор проб вынутого грунта, на основании которого может быть составлено геологическое описание разреза скважины.

Во многих случаях исследуемый водоносный горизонт отделяется от других водоносных горизонтов слоями менее проницаемых пород. Места контактов облицовочных стенок с проницаемыми верхними горизонтами должны отделяться от исследуемого водоносного слоя средствами, известными как герметизация (или цементирование). Скрепляющий раствор может быть глинистым или смесью цемента с водой в такой пропорции, которая позволяет налаживаться труб, цементирование или герметизация обсадки в наблюдательных скважинах выполняется в следующих целях:

a) предотвратить просачивание загрязняющих поверхностных вод в водоносный слой, которое может происходить по внешней стороне облицовочных труб;

b) изолировать исследуемый водоносный горизонт от вод, которые могут поступать из вышележащих водоносных образований;

c) уплотнить пригонку облицовочных стенок в скважине, которая имеет больший диаметр, чем облицовка.

Верхние три метра скважины обычно обрабатываются водонепроницаемым материалом. Для изоляции верхних водоносных слоев непроницаемый материал должен укладываться на три метра выше водоупорного горизонта между водоносными слоями.

В плотных скальных породах наблюдательная скважина может устанавливаться без облицовки. На рисунке I.6.2 показана полностью оборудованная скважина для таких условий. Пробуренное отверстие следует очистить от мелких обломков и отходов бурения. Очистка скважины может осуществляться откачкой или вычерпыванием воды, пока вода не станет чистой.

![Рисунок I.6.2. Наблюдательная скважина в горной породе](image-url)
Облицовочные стенки устанавливаются в скважинах, пробуренных в рыхлых отложениях. Основные особенности установки облицовочных стенок показаны на рисунке I.6.3. Следует отметить, что:

a) обычный диаметр облицовочных труб в наблюдательных скважинах — 50 мм;
b) на дне скважины устанавливается пустая секция, закрытая с нижнего конца; длина этой секции должна быть не менее 3 м, она служит для накопления отложений, которые могут поступать из сетчатой секции облицовки; пустая секция называется отстойником;
c) секция в виде сетки, называемая фильтром или решеткой, прикрепляется к отстойнику и обеспечивает свободный обмен водой между водоносным слоем и скважиной; решетка в облицовке наблюдательной скважины имеет длину около 2 м;
d) пустая секция облицовки на верхнем конце скважины должна иметь достаточную длину, чтобы быть выше поверхности земли примерно на 1 м, иметь место для нанесения постоянной отметки начала отсчета при выполнении программы наблюдений;
e) точное положение сетчатой секции в скважине должно обеспечиваться центрирующими крестовинами;
f) если водоносный пласт представлен мелким или осадочным песком, то необходим защитный экран, который устраивается из необработанного гравийного материала, засыпаемого в зазор между фильтрующей секцией и стенками скважины; при диаметре скважины 150 мм и диаметре облицовочной трубы 50 мм обычная толщина гравийного экрана составляет 45 мм, но не должна быть меньше 30 мм; чаще всего

![Рисунок I.6.3. Наблюдательная скважина в песчаных отложениях](image-url)
Глава 6. Подземные воды

6.3.2 Испытание наблюдательных скважин

В исследуемом районе может существовать несколько водоносных пластов или водоносных прослоев на различных глубинах, ниже поверхности земли, разделённых водоупорами различной толщины. В таких случаях полезно придерживаться следующих правил (рисунок I.6.4):

а) прежде всего должна быть пробурена скважина большого диаметра до самого нижнего водоносного горизонта;

б) наблюдательные скважины меньшего диаметра с соответствующим экранированием устанавливаются до самого нижнего водоносного слоя;

в) внешняя обсадная труба поднимается до водоупора, расположенного выше этого водоносного пласта; верх нижнего водоносного горизонта цементируется раствором цемента или другого соответствующего вещества;

г) затем устанавливается наблюдательная скважина малого диаметра до следующего водоносного пласта, которая изолируется цементированием от водоносного слоя, залегающего выше;

д) вышеуказанные шаги (с) и (д) повторяются при проходке для каждого нового водоносного горизонта.

В этом случае изоляция каждого из водоносных пластов должна осуществляться с большей тщательностью, чтобы предотвратить водообмен между водоносными слоями с различными химическими свойствами или потерю артезианского давления. Если геологическое строение района хорошо известно, и глубина каждого водоносного пласта может быть определена, то желательно установливать скважину на каждом водоносном горизонте. Такие буровые скважины находятся друг от друга на расстоянии всего лишь нескольких метров. Этот метод может оказаться более экономичным.

Уход за насосными скважинами, включенными в наблюдательную сеть, должен осуществляться владельцами скважин.

Наблюдательные скважины должны обслуживаться организациями, ответственными за мониторинг и исследование подземных вод. Место вокруг скважины должно быть свободным от растений и обломков. На бетонном покрытии может быть установлен латунный диск с указанием отметки наблюдательной скважины и наименованием организации. Этот латунный диск может использоваться в качестве репера для служебных целей.

Если выступающую часть облицовочной трубы требуется заменить из-за повреждения, то на вновь установленной трубе необходимо определить новую отметку начала отсчета. Для скважин, которые не откачиваются, но используются в качестве наблюдательных, все работы по эксплуатации и определению отметки начала отсчета следует выполнить по тем же правилам, по которым осуществляется эксплуатация специально установленных наблюдательных скважин.

Часть обсадной трубы, выступающей над поверхностью земли, должна быть окрашена в яркий цвет, чтобы быть легко заметной на расстоянии. Глубина стояния уровня воды измеряется от конца трубы (после снятия пробок). Эта относительная отметка должна иметь привязку к общей системе отсчета, принятой для данного района.

Если выступающую часть облицовочной трубы требуется заменить из-за повреждения, то на вновь установленной трубе необходимо определить новую отметку начала отсчета. Для скважин, которые не откачиваются, но используются в качестве наблюдательных, все работы по эксплуатации и определению отметки начала отсчета следует выполнять по тем же правилам, по которым осуществляется эксплуатация специально установленных наблюдательных скважин.

Испытание наблюдательных скважин. Реакцию наблюдательной скважины на изменения в колебания уровня воды в водоносном горизонте следует определить сразу же после окончания установки скважины. Простой метод испытания наблюдательных скважин малого диаметра состоит в наблюдении за утечкой в зону обмена, при этом известный объем воды нагнетается в скважину, и измеряется поступившее падение уровня воды. Первоначальный подъем воды должен упасть до 5 мм исходного уровня в течение трех часов. При слишком медленном падении уровня необходимо предпринять очистку скважины, удалить грызь с фильтра или прорезей, удалить
Рисунок I.6.4. Схематическое изображение поперечного разреза наблюдательных скважин, устанавливаемых в нескольких водоносных горизонтах.

Удаленность от моря: 375 м
ГЛАВА 6. ПОДЗЕМНЫЕ ВОДЫ

6.3.3 Закупорка и заполнение заброшенных скважин

Наблюдательные и насосные скважины перестают действовать по следующим причинам:

a) несостоятельность скважины в отношении количества и качества поступающей воды;
b) установка новой более глубокой скважины взамен старой;
c) окончание использования наблюдательной скважины в исследовательских целях.

Во всех этих случаях заброшенные скважины подлежат закрытию или выведению из строя таким образом, чтобы они не могли служить каналами для водообмена между водоносными слоями, который может привести к ухудшению качества воды в пластах, пересекаемых скважинами.

Заполнение и закупорка заброшенных скважин должны выполняться следующим образом:

a) если не требуется непроницаемый материал, то скважина заполняется песком или другим подходящим неорганическим материалом;
b) для предотвращения водообмена между водоносными горизонтами или потери артезианского давления, скважина заполняется водонепроницаемым неорганическим материалом. Этим запирающим материалом скважина заполняется не менее чем на 3 м вверх и вниз от линии контакта с водоносным горизонтом для того, чтобы предотвратить поступление воды из водоносного пласта;
c) если границы залегания различных образований неизвестны, то скважина заполняется чередующимися слоями водонепроницаемых и проницаемых пород;
d) мелкозернистый материал не следует использовать в качестве заполнителя для трещиноватых скальных пород; в этих случаях лучше использовать цементный или бетонный жидкости растворы.

6.4 ИЗМЕРЕНИЯ УРОВНЯ ПОДЗЕМНЫХ ВОД И СЕТИ НАБЛЮДАТЕЛЬНЫХ СКВАЖИН [ГОСТ C65, E65, G10]

6.4.1 Приборы и методы наблюдений

Прямые измерения уровня подземных вод в наблюдательных скважинах можно проводить либо ручными, либо автоматическими приборами с непрерывной записью наблюдений. В приведенных ниже описаниях приборов излагаются принципы измерений уровня подземных вод. Описания некоторых приборов даются в приведенном списке литературы.

6.4.1.1 Ручные приборы

Найболее распространенный способ ручного измерения уровня подземных вод заключается в том, что от определенной точки на поверхности земли, обычно расположенной на оголовке скважины, опускают груз (подвешенный, например, на размеченном гибком стальном тросе или пластмассовой ленте) до произвольной точки, ниже уровня подземных вод в скважине. Подняв трос на поверхность, определяют положение уровня подземных вод, вычитая длину погруженной в воду части троса из общей длины троса, опущенного в скважину. Длину смоченной части троса можно определять более точно, если перед каждым измерением натирать нижнюю часть троса мелом. Для этой же цели применяли пасты, меняющие цвет при соприкосновении с водой, но они содержат ядовитые вещества, и поэтому применения их следует избегать.

Необходимо делать несколько пробных измерений для того, чтобы заранее (до производства отсчетов) знать приблизительную глубину до поверхности воды. По мере увеличения глубины залегания воды, длина троса увеличивается, и, в конце концов, его вес и громоздкость всего оборудования становятся труднопреодолимыми для наблюдений. Глубину до поверхности воды и когда трос станет тяжелым, измерения прекращаются. По мере увеличения глубины залегания воды, длина измерительного троса увеличивается, и, когда трос станет тяжелым, измерения прекращаются. По мере увеличения глубины залегания воды, длина измерительного троса увеличивается, и, в конце концов, его вес и громоздкость всего оборудования становятся труднопреодолимыми для наблюдений. Глубины до поверхности воды иллюстративные материалы, которые могут быть использованы для того, чтобы скважина функционировала правильно.
можно измерить с точностью до нескольких миллиметров, но точность измерения различными методами обычно зависит от этой глубины.

Разработаны приборы, основанные на принципе инерции: груз, прикрепленный к концу троса, падает с постоянной скоростью под влиянием силы тяжести, при этом трос сматывается с барабана переносного прибора, установленного на поверхности земли. При ударе груза о поверхность воды, автоматически срабатывает тормозной механизм, и дальнейшее падение прекращается. Длина спущенного троса, соответствующая глубине залегания воды, отмечается на счетчике оборотов. Этот прибор предназначен для измерения глубины с точностью до 1 см, но опытные наблюдатели добиваются точности до 0,1 см.

В системе с двойным электродом на конце кабеля в одном корпусе помещают два небольших электрода длиной от 10 до 20 см. Эта система также включает аккумуляторную батарею и электросчетчик, который включается, когда электроды погружаются в воду. Электрический кабель должен обладать ничтожным сопротивлением, причем пластмассовая изоляция для него предпочтительнее резиновой. Кабель размечается с помощью съемных меток, прикрепляемых к нему через каждые 1 или 2 м. Точная глубина до поверхности воды измеряется стальной рулеткой в ближайшей метке на кабеле. Измерения глубин примерно до 150 м проводятся без труда, возможно измерение и до 300 м и даже больше. Предельы измеряемых глубин зависят от длины электрического кабеля, устройства электрической цепи, веса оборудования (в частности, веса спускаемого в скважину кабеля) и усилия, прилагаемого для спуска и подъема кабеля. Точность измерения определяется опытным наблюдателем и точностью разметки кабеля. Размещение меток на кабеле и электрическая цепь должны проверяться через регулярные интервалы времени, желательно до и после определенной серии наблюдений. Применение электрических измерительных устройств особенно выгодно там, где требуются повторные измерения уровня воды через короткие интервалы времени во время опыта и метеослучаев.

В очень глубоких скважинах, требующих длину кабеля порядка 500 м, точность измерения составляет примерно ±15 см. Однако при измерениях изменений уровня воды можно получить точность, близкую к миллиметру, если опускаемый кабель имеет датчик, реагирующий на уровень воды.

Для ручных измерительных устройств можно использовать электрохимический эффект, вызываемый двумя разнородными металлами, погруженными в воду, причем в этом случае не требуется батарея для питания. В большинстве случаев можно возбудить опущенный электрический ток, погрузив в подземные воды либо два электрода (например магниевый и медный), смонтированные в одном корпусе, либо один электрод (магниевый) со стальным заземительным стержнем на поверхности земли. Вследствие слабого напряжения возникающего тока в качестве индикатора обычно используют микроамперметр. Система с одним электродом может быть выполнена в виде размеченного стального троса, проводящего электрический ток, или в виде ленты, покрытой пластмассой и соединенной с электрическим одножильным кабелем. Точность измерений зависит от точности разметки троса или ленты, но вообще, легко выполнимы отсчеты с точностью до 0,5 см.

Можно поместить в наблюдательную скважину поплавок и соединить его тросом, перекинутым через блок, с противовесом; изменения уровня воды определяются по изменениям положения противовеса или метки на тросе. К блоку можно присоединить шкалу для непосредственных отсчетов уровня. Этот прибор пригоден в основном для измерений колебаний уровня с незначительной амплитудой.

При излиянии подземных вод на поверхность земли прежде, чем приступить к измерениям, следует налить на о головок скважины герметичные уплотнения. Давление (или эквивалентный уровень воды) можно измерять манометром либо визуально, либо присоединив к манометру самописец; где это окажется целесообразным, можно измерять уровень воды в узкой расширительной трубе, изготовленной из стекла или пластика, установленной непосредственно над оголовком скважины. Если ожидаются морозы, то в воду следует налити масло или антифриз.

Все ручные измерительные приборы требуют бережного обращения и постоянного ухода, иначе их эффективность будет значительно снижена. Ручные приборы для непосредственных отсчетов уровня не пригодны в основном для измерений колебаний уровня с незначительной амплитудой.

6.4.1.2 Автоматические самописщикие приборы

Существует много различных типов автоматически действующих самописцев уровня подземных вод непрерывного действия. Можно спроектировать самописец для индивидуальной установки, но все же главное внимание при проектировании следует уделить взаимозаменяемости приборов. Самописец должен быть портативным, легко устанавливаемым, он должен безотказно вести запись в широком диапазоне климатических условий и работать автономно в течение различных периодов времени. Необходимо обеспечить возможность вести запись колебаний уровня с различной скоростью с помощью съемных датчиков.
ГЛАВА 6. ПОДЗЕМНЫЕ ВОДЫ

механизмов для записи по шкале времени и шкале уровней. Таким образом, один и тот же основной прибор, при помощи минимального количества вспомогательного оборудования, может быть использован в течение различных периодов времени, на разных наблюдательных скважинах, в пределах большой амплитуды колебаний уровня.

Опыт показал, что наиболее удобным из всех существующих непрерывно действующих самописцев уровня является самописец, приводимый в действие поплавком. У этого самописца график колебаний уровня вычерчивается на ленте, укрепленной на горизонтальном или вертикальном барабане, либо на перематывающейся ленте. Для получения наилучших результатов при наибольшей чувствительности, диаметр поплавка должен быть возможно большим, а вес передающего троса и противовеса возможно меньшим. Как правило, диаметр поплавка должен быть не меньше приближительно 12 см, хотя некоторые модификации отдельных типов самописцев допускают применение поплавков меньшего диаметра. Барабан или перо приводится в движение пружинным или электрическим часовым механизмом. Запись производится пером или иглой на специально обработанной бумаге. Используя съемные механизмы, можно изменять соотношение между скоростью вращения барабана и колебаниями уровня воды; масштаб записи колебаний уровня подземных вод может быть от 1:1 до 1:20. Скорость записи у приборов различных типов различна, но обычно записывающие механизмы устроены таким образом, что полная длина ленты соответствует периоду в 1, 2, 3, 4, 5, 16 или 32-м суткам. Некоторые самописцы с перематывающимися лентами могут работать непрерывно свыше шести месяцев.

Если поплавочные самописцы снабжены размеченным тросом, то при каждой смене лент следует производить непосредственный отсчет глубины (или относительной глубины) уровня воды и отмечать его в начале и конце графика колебаний уровня. Эти отсчеты следует проверять через регулярные промежутки времени по ручным приборам. Точность определения промежуточных уровней на ленте зависит в первую очередь, от отношения скорости вращения барабана самописца к величине колебаний уровня подземных вод и связана, таким образом, с передаточным числом самописца.

Непрерывные измерения уровня подземных вод в скважинах малого диаметра представляют собой трудную проблему, потому что по мере уменьшения диаметра поплавка, резко уменьшается чувствительность всего поплавкового механизма. Для слежения за изменениями уровня воды были разработаны миниатюрные поплавки и электросонды малого диаметра. Их движущая сила обычно обеспечивается пружинным или электрическим сервомеханизмом, установленным на поверхности земли среди наземного оборудования. Миниатюрный поплавок подвешивается в скважине на тросе, который удерживается барабаном с приводом, и имеет связь с блоком самописца уровня воды. В состоянии равновесия сервометр выключен. Снижение уровня воды в скважине вызывает перемещение поплавка, которое приводит в движение барабан, и это незначительное перемещение барабана вызывает электрический контакт, который включает малый мотор. Барабан, приводимый в движение этим мотором, освобождает трос до восстановления равновесия и отключает мотор. При подъеме уровня воды в скважине воздействие на барабан осуществляется в обратном направлении — электроконтакт включает малый мотор, прводя его в движение трос, который наматывается на барабан до тех пор, пока новое равновесие не будет достигнуто. Эти перемещения троса фиксируются пером самописца, и таким образом на ленте самописца получается запись колебаний уровня воды в скважине. Сервомотор, который вращает барабан с тросом, может приводиться в действие и зондом, реагирующим на уровень воды в скважине. Такое приспособление состоит из датчика, подвешенного на электрическом кабеле, который наматывается на шкив самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембране, которая передает его на зонд самописца уровня. Колебания уровня воды вызывают изменение давления, которое передается мембр
Другим вариантом измерения уровня воды в скважине является электрозонд, который представляет собой электрод, подвешенный на кабеле в наблюдательной скважине на известном расстоянии над уровнем воды. Через определенные промежутки времени сервомеханизм приводит в движение электрозонд, который опускается и касается поверхности воды, посылая электрический сигнал. В этот момент отмечается расстояние до уровня воды. Эта система может быть использована с различными системами записи.

Хотя эти приборы особенно ценны для применения в скважинах малого диаметра, они могут быть установлены в скважинах любого диаметра, превышающего рабочий диаметр зонда.

Самописцы уровня воды с цифровой записью, используемые при измерении расхода воды на реках, могут быть легко приспособлены к измерению уровня подземных вод.

Автоматические самопишущие приборы требуют умелого и оперативного обслуживания, иначе записи погибнут. Несложный ремонт можно осуществлять на месте, но при более серьезных неполадках прибор следует заменить и отправить для ремонта в лабораторию или мастерские. Следует также принимать меры, необходимые для защиты таких приборов от экстремальных климатических условий, случайных или умышленных повреждений. Пружины и электрические часовые механизмы чувствительны к воздействию повышенной влажности,
Глава 6. Подземные воды

Поэтому необходима их тщательная вентиляция, а при определенных условиях — применение десикаторов.

Для некоторых исследовательских проектов были сконструированы более сложные приборы для измерения колебаний уровня подземных вод, например: емкостные электрозонды, преобразователи давления, тензометры, отражатели звуковых и коротких волн. В настоящее время стоимость этих приборов значительно выше по сравнению со стоимостью поплавковых самописцев уровня, и они также в большинстве случаев требуют высококвалифицированного обслуживания. Считается, что поплавковые системы самописцев более надежны и могут найти более широкое применение, чем любые другие системы, хотя развитие приборостроения в области датчиков, преобразователей и записывающих устройств в будущем может создать предпосылки для разработки новых приборов такого же или лучшего качества при сравнительно невысокой их стоимости.

6.4.1.3 Сеть наблюдательных скважин

Понимание подземных условий зависит от доступной гидрогеологической информации; чем больше объем информации, тем лучше понимание в отношении водоносных слоев, уровней воды, гидравлических градиентов, скорости потоков, качества воды и т. д. Данные о пьезометрических напорах и качестве воды получают на основе измерений, сделанных в наблюдательных скважинах, а также на основе анализа образцов подземных вод. Плотность сети наблюдательных скважин обычно зависит от количества необходимых данных, но в реальности базируется на доступных для этого ресурсах. Сбор наблюдательных скважин является одним из главных источников, которые позволяют сделать предположение о том, насколько психически развиты измерения подземных вод. Использование существующих скважин имеет определенный потенциал и их можно улучшить, чтобы уточнить, какой из них представляет собой эффективную и недорогую возможность. Поэтому при разработке наблюдательной сети существующие скважины должны быть тщательно отобраны и дополнены новыми скважинами, пробуренными и специально сконструированными для целей исследования.

6.4.1.4 Колебания уровня воды

Колебания уровня подземных вод отражают изменение запасов подземных вод в водоносных слоях. Можно выделить два главных вида колебаний: долговременные, обусловленные, например, сезонными колебаниями естественного питания и непрерывной усиленной откачкой; и кратковременные, вызванные, например, периодической откачкой, приливными явлениями или изменениями атмосферного давления.

Вследствие того, что уровни грунтовых вод обычно медленно реагируют на внешние изменения, для задач, стоящих перед большинством государственных сетей, большей частью не требуется проведение непрерывных измерений. Вполне достаточно проводить систематические наблюдения через фиксированные интервалы времени. Там, где по каким-либо причинам происходят быстрые колебания уровня, желательно организовать непрерывные наблюдения, по крайней мере до тех пор пока не будут установлены причины таких колебаний.

6.4.1.5 Карты уровня воды

Удобным подходом к организации и координации измерений уровня воды с сети наблюдательных скважин является использование карты местоположений скважин и вычерчивание горизонтальной поверхности измерений воды в каждой скважине. Могут быть изготовлены два типа карт, которые основываются либо на глубине залегания воды, либо на уровне воды в скважине к установленному значению, такому как морская поверхность воды. Обычно такие карты могут быть использованы для кривых уровней воды на основе карты в области исследований.

6.4.1.5.1 Карты глубины залегания воды

Самая простая в изготовлении карта основывается на измерении глубины залегания воды в скважине относительно поверхности. Такая карта называется картой глубины залегания воды. Карты такого типа показывают необходимую глубину бурения для воды, что может быть полезно при планировании последующих проектов освоения ресурсов. Карты, основанные на разнице глубины залегания воды в разные периоды измерения, используются, например, с целью показать региональные изменения сезонных колебаний. Существенным недостатком такой карты является невозможность определить по ней вероятное направление потока грунтовых вод по причине независимых изменений топографической высоты.

6.4.1.5.2 Карта потенциометрическая (гидростатическая) поверхности, потенциометрические разрезы

Карта уровня воды, основанная на высоте уровня воды в скважине относительно известной величины, такой как уровень моря, называется картой потенциометрической поверхности (рисунок 1.6.6). Если карта
изготовлена для водного зеркала или поверхностного водоносного слоя, она может называться картой подземных вод. Этот тип карты более сложен в изготовлении, нежели карта глубины залегания воды, поскольку он требует точных данных по высоте в каждой наблюдательной скважине. Каждое измерение глубины залегания воды должно быть отнято от высоты места измерения относительно исходного уровня для получения необходимых данных. Существенная польза этого метода заключается в том, что во многих случаях эта карта может быть использована для определения направления течения подземных вод. Точность карты зависит от точности измерений высоты мест измерений. Самыми точными картами являются карты, основанные на высотных отметках, которые были получены с использованием правильных геодезических практик высокого порядка. Они могут потребовать значительных усилий и финансовых

На основе цифровых данных Геологической службы США, 1:100 000, 1983. Универсальная поперечная проекция Меркатора, зона 18.

Рисунок I.6.6. Пример карты потенциометрической поверхности (Lacombe and Carleton, 2002)
ГЛАВА 6. ПОДЗЕМНЫЕ ВОДЫ

6.4.1.6 Измерение расхода скважины

Скважины, оборудованные насосом, могут оказывать существенное влияние на течение подземных вод и их уровни. Измерение расхода таких скважин имеет большое значение для содействия сопоставлению эффектов понижения (уровня воды) и для количественного анализа. Стандартные методы измерения включают в себя замеренное время заполнения точного объема, измерители расхода и измерения расхода через отверстие (American Society for Testing and Materials International: ASTM D5737-95, 2000). Расход скважин, оборудованной насосом, будет изменяться вместе с уровнем грунтовых вод. Это может потребовать проведения неоднократных измерений для слежения за скоростью. Когда насос включен, уровень воды падает, тем самым вызывая изменения в расходе. Постоянство в скорости откачки является обычно вопросом минут или часов. Измерения уровня воды, способные повлиять на скорость откачки, могут также быть следствием появления осадками или следствием изменений в откачке близлежащих скважин. Изменения в конфигурации откачки расхода, такие как длина трубки или диаметр до точки свободного расхода, могут оказывать воздействие, поэтому их стоит избегать. Эти процедуры измерения потока могут также применяться в безнасосных скважинах.

Рисунок I.6.7. Пример потенциометрического поперечного сечения, показывающего соотношение гидростатического давления между несколькими водонесущими слоями (Buxton and Smolensky, 1999)

затрат. Существует несколько альтернатив. К ним относятся использование данных о высоте, взятых с топографических карт, если таковые существуют для места исследования, или использование альтиметра или ГСОМ для получения отметок высоты. Каждый отчет с потенциометрической картой должен включать в себя данные по источнику и точности данных по высоте.

Карты отображают информацию в двухмерном пространстве. Поскольку подземные воды текут в трехмерном пространстве, требуется другой взгляд для понимания потенциометрических данных во всех направлениях. С потенциометрическими данными поверхности по многим водонесущим слоям или глибинам в каждом или многих местах получения данных сети наблюдательных скважин становится возможным произвести потенциометрический разрез (рисунок I.6.7). Потенциометрические разрезы — это точно масштабированные чертежи мест расположения скважин вдоль поперечного надреза, показывающие глубину по вертикальной оси и поперечное расстояние по горизонтальной. Уровень воды конкретной скважины нанесен графически относительно оси глубины. Принято также указывать открытый интервал скважины на диаграмме. Эти разрезы могут показать сравнительную разницу между уровнями воды между водонесущими слоями и могут быть очень полезны в определении вертикального направления потока подземных вод.
6.4.1.6.1 **Калиброванный объем**

Простейший метод определения расхода из скважины, оборудованной насосом, заключается в измерении времени, за которое откачанный расход заполнит калиброванный объем. Скорость откачек будет равной результату деления этого объема на время. Точность измерения зависит от точности измерения времени и технического обеспечения заполнения калиброванного объема. Для сравнительно маленькой откачки измерение легко производится при помощи ведра или барабана с калибровочными метками. Однако при большом расходе измерение такого типа может потребовать технического планирования для направления расхода в подходящий сосуд или контейнер для измерения. Сила потока расхода или присутствие увеличенного расходом воздуха может осложнить ситуацию.

6.4.1.6.2 **Измерители расхода**

Существует множество механических, электрических и электронных измерителей, разработанных для измерения потока жидкости в трубе. Некоторые измерители показывают мгновенный расход, в то время как другие собирают полную информацию по потоку. Можно использовать любой тип измерителей. Некоторые модели способны сочетаться с электронным оборудованием записи данных. Соответствующие инструкции от производителя должны быть соблюдены для обеспечения точного измерения. Работа измерителей может быть чувствительна к турбулентности потока. Инструкции могут требовать наличия нормальной трубы требуемой длины метра для нивелирования эффекта турбулентности. Кроме того, условия нормальной трубы требуются для большинства измерителей. Если труба относительно большого диаметра служит трубопроводом для относительно малого расхода, она может не заполнена полностью водой. Для поддержания условий нормальной трубы вентиль, находящийся дальше по течению от измерителя, может быть частично закрыт. Увеличенный воздух или наносы в потоке могут повлиять на точность измерения и, в случае с наносами, повредить считывающее оборудование.

6.4.1.6.3 **Расход через диффузор**

Другим общепринятым методом измерения расхода в оборудованной насосом скважине является использование свободного расхода через измерительную диффузору. Измерительная диффузором — это отверстие в пластине определенного диаметра, имеющее форму, сжатый конец которого прикреплен краем на конце горизонтальной трубы (рисунок I.6.8). Диаметр диффузора должен быть меньше диаметра трубы. Вода, текущая через трубу, может свободно выходить через диффузор. Так как диффузор несколько препятствует потоку, обратное давление пропорционально потоку. Это давление обычно измеряется прямым образом трубой манометра, расположенной в трех диаметрах вверх по течению от диффузора и по центру трубы. Значение измеренного давления, диаметр трубы расхода и диаметр диффузора используются для регистрации «площадки диффузора» для определения потока. Эти площадки и подробные требования для проектирования диффузора и измерительной диффузомы содержатся в ISO 5167-2 (2003b).

6.4.1.6.4 **Удельная емкость**

Полезным показателем для облегчения сравнения понижения уровня воды с расходом в скважинах является удельная емкость. Этот параметр определяется установившимся расходом скважины, поделенным на понижение уровня воды в скважине, оборудованной насосом из ее безнасосного состояния в установившийся уровень с насосом (м^3 с^-1 м^-1).

6.4.1.7 **Водопонижение в скважине, оборудованной насосом; депрессионная воронка**

Движению воды из водоносного горизонта в скважину с насосом препятствует фрикционное сопротивление с материнской породой водоносного слоя. Результатом этого сопротивления является понижение или падение уровня воды в скважине, которую откачивают, и в смежных частях водоносного горизонта. Это падение называется водопонижением. Водопонижение это изменение уровня воды от статического состояния «до откачивания» до состояния «откачивания»: падение уровня воды в результате откачки нелинейно уменьшается на расстоянии от скважины с насосом. Итоговый результат называется депрессионная воронка. Водопонижение и итоговая депрессионная воронка в неограниченном водоносном горизонте являются результатом самотечного дренажа и осушения части водоносного горизонта по соседству со скважиной (рисунок I.6.9 справа). В ограниченном водоносном слое депрессионная воронка показывает падение в потенциометрической (изохиметрической) поверхности, но не осушение водоносного слоя (рисунок I.6.9, слева). Отношение между скоростью откачки, падением уровня воды и расстоянием от скважины является функцией от привлекающей проницаемости материала водоносного слоя и доступных источников пополнения.
ГЛАВА 6. ПОДЗЕМНЫЕ ВОДЫ

Рисунок I.6.8. Схематическая диаграмма, показывающая как оборудуется отверстие трубы со свободным расходом воды для измерения расхода в закаченном колодце
(United States Department of the Interior, 1977)

Рисунок I.6.9. Снижение уровня воды в насосной скважине в неограниченном водоносном горизонте (слева) и в ограниченном водоносном горизонте (справа) (Heath, 1983)
6.5 **ГИДРАВЛИЧЕСКИЕ СВОЙСТВА ВОДОНОСНЫХ ГОРИЗОНТОВ И ВОДОУПОРЫ**

Количественный анализ подземных вод включает в себя понимание амплитуды и изменчивости ключевых гидравлических свойств. Многие сети по сбору данных и анкетирования организованы для сбора данных с целью определить свойства водоносных горизонтов и водоупоров.

6.5.1 Гидравлические параметры

Движение подземных вод контролируется определенными гидравлическими свойствами, самым важным из которых является проницаемость. Для изучения движения воды в горных породах проницаемость рассчитывается, принимая физические свойства (вязкость и др.) воды, и называется водопроницаемостью. Водопроницаемость — это объем воды, который проходит в единицу времени под гидравлическим градиентом через единицу площади. Она измеряется в единицах скорости (дистанция за время). Типичная амплитуда водопроницаемости для обычных скальных и осадочных пород показана на рисунке I.6.10. Также существует термин пропускная способность, который определяется как водопроницаемость, умноженная на толщину водоносного горизонта. Разница между этими двумя величинами — это единичное свойство, в то время как пропускная способность относится ко всему водоносному горизонту.

Коэффициентом водоотдачи называется объем воды, который водоносный горизонт сохраняет или выпускает из хранилища на единицу поверхности водоносного слоя и единицу изменения напора. Коэффициент водоотдачи — это безразмерный параметр. Для неограниченного водоносного горизонта коэффициент водоотдачи получают из самотечного дренажа единичного объема водоносного слоя, и он обычно находится в пределах от 0,1 до 0,3. Для ограниченного водоносного слоя, где насыщение полное, коэффициент получают из увеличения объема воды и сокращения водоносного горизонта. Поэтому значение этого коэффициента для ограниченного водоносного горизонта на несколько порядков меньше, чем для неограниченного, и обычно он находится в пределах от 0,00001 до 0,001.

Водопроницаемость и коэффициент водоотдачи могут быть определены для водоупоров так же, как и для водоносных горизонтов. Различие между водоносным горизонтом и водоупором относительно. Считается, что водопроницаемость водоносных горизонтов для заданного места на несколько порядков больше, чем у водоупоров.

6.5.2 Обзор общепринятых полевых методов для определения гидравлических параметров

Определение водопроницаемости и коэффициента водоотдачи конкретного водоносного слоя или ограничивающего слоя обычно осуществляется через все

Рисунок I.6.10. Гидравлическая проводимость общих типов горных пород и наносов (Heath, 1983)
Тесты, произведенные в поле, которые носят название испытание водоносного слоя или опытная откачка. Эти тесты проводятся для измерения понижения уровня воды вследствие откачки или похожего гидродинамического напора и для расчета гидравлических параметров. Величина и время понижения уровня воды, связанные с конкретным тестом, непосредственно зависят от водопроницаемости и коэффициента водоотдачи соответственно.

6.5.2.1 Тесты водоносного слоя с использованием насоса

Общая цель теста водоносного слоя заключается в том, чтобы определить гидравлические параметры в тех местах, где откачка контролируется и обычно держится на одном уровне и где уровни воды в скважине измерены. Рисунок 6.11 показывает схематичную диаграмму типичного теста толщины ограниченного водоносного горизонта — b. Три скважины, обозначенные A, B и C, расположены на различных радиусах (r — на скважине B) от скважины с насосом. Откачивание известного расхода вызывает депрессионную воронку на потенциометрической (пьезометрической) поверхности водоносного горизонта, которая выражается в понижении уровня воды s, измеряемого в скважине B, что является разницей между начальной вершиной h₀ и вершиной при откачке. Данные по уровню воды в каждой скважине, включая скважину с насосом, собирают до начала откачивания для установления уровня воды до теста, а потом в ходе проведения теста. Расход откачиваемой воды тоже измеряют.

Тестирование водоносного горизонта обычно длится от 8 часов до месяца или дольше, в зависимости от времени, требуемого для достижения устойчивого уровня откачиваемой воды. Когда насос включается, уровень воды опускается. Самое большое понижение будет в скважине с понижением, уменьшающимися нелинейно с дистанцией от скважины и повышающимися нелинейно со временем. Наблюдаемые значения являются изменяющимися со временем понижением уровня грунтовых вод. Это называется переходным тестом из-за изменения понижения со временем. Данные обычно графически наносятся двумя способами — либо как графики двойного или половинного логарифма дистанции и понижения, либо как времени и понижения. График понижения по дистанции нужен для данных, собранных со всех скважин в определенный момент времени, в то время как график понижения по времени — для всех данных, собранных с одной скважины. Обычно анализ данных теста производится либо вручную (графически), либо с помощью специальной программы. Первый метод основывается на подходе, при котором все графики данных накладываются друг на друга и сравниваются с целью установить «теоретические кривые» для расчета водопроницаемости и коэффициента водоотдачи. Многочисленные графики анализируются индивидуально, после чего определяется среднее или общее значение для теста.

Детальное объяснение того, как точно собирать данные и как их анализировать не входит в данное Руководство по причине того, что существует множество

Рисунок. 6.11. Схематическая диаграмма обычного испытания водоносного слоя, показывающая различные измерения (Heath, 1983)
6.6 ПОПОЛНЕНИЕ И РАСХОД, ИСТОЧНИКИ И ВОДОСЛИВЫ В СИСТЕМЕ ПОДЗЕМНЫХ ВОД

Пополнение и расход — это пути, которыми вода попадает в систему подземных вод и выходит из нее. Понимание и определение количества этих путей — ключ к пониманию природы всей системы подземных вод. Специалисту следует ознакомиться с публикациями Уолтена (Walton, 1996), Крузмана и др. (Kruseman and others, 1994) и Рида (Reed, 1980) для получения общего представления о принятых методах и детального описания методик анализа. Кроме того, стандарты для управления и анализа водоносного горизонта были разработаны Международной организацией по стандартизации (ISO 14686, 2003a) и Американским обществом по испытаниям и материалам (ASTM D4106-96, 2002). Пример анализа теста крупноформатного водоносного горизонта представлен в работе Халфорда и Куниански (Halford and Kuniansky, 2002).

6.6.1 Пополнение за счет осадков

Осадки, которые просачиваются сквозь почву, в итоге могут пополнить систему подземных вод. Это обычно случается в областях относительно высокого топографического уровня и зависит от проницаемости почвы. Отдельные случаи пополнения могут быть идентифицированы как подъемы или спады уровня воды. Если пористость водоносного горизонта известна, обычно в пределах от 5 до 40 %, примерный объем пополнения может быть рассчитан для единицы площади водоносного слоя как произведение подъема уровня воды, пористости (как доли общего объема) и площади.

6.6.2 Взаимодействие подземных и поверхностных вод

Во многих областях система подземных вод непосредственно связана с системой поверхностных вод таким образом, что даже большие объемы воды могут перетекать из одной системы в другую. Важно понимать эту связь.

6.6.2.1 Потоки, питаемые подземными водами, и питающие подземные воды

Подъем уровней воды в потоке относительно близлежащего уровня воды на поверхностном или безпорном водоносном слое контролирует направление потока между этим двумя частями гидрологической системы. В ситуации, когда уровень воды в потоке ниже уровня подстилающего водоносного горизонта, который направляет поток вверх по течению, речь идет о потоке, питающем подземными водами (рисунок I.6.12, вверху). В обратной ситуации, когда уровень выше уровня воды в подстилающем водоносном горизонте, который направляет течение вниз к водоносному слою, речь идет о потоке, питающем подземные воды (рисунок I.6.12, в середине). В некоторых случаях, особенно засушливых условиях, водоносный горизонт может не иметь насыщенной связи с потоком. В этом случае также речь идет о потоке, питающем подземные воды (рисунок I.6.12, внизу).

Пополнение грунтовых вод за счет потоков, питаемых подземными водами или расход грунтовых вод за счет потоков, питаемых подземными водами, могут быть вычислены или измерены разными способами:

a) для потока, питающего подземными водами, изучение гидрографа за долгий период может показать базисный сток. Базисный сток, отображенный на гидрографе речного стока (том II, раздел 6.3.2.2.2) может быть включен в расход подземных вод. Другие постоянные расходы из резервуаров или водочистящих сооружений также могут быть частью базисного стока;

b) для потоков, питаемых подземными водами и питающих подземные воды, измерения расхода, сделанные вверх и вниз по течению, показывают пополнение или потерю в пределах погрешности измерения (глава 5). Выбранный участок реки должен иметь других входов или выходов, таких как притоки, водочистые сооружения, водо-приемные сооружения или возвратные воды орошения;

c) прямое измерение расхода потока может быть произведено с помощью приборов для определения потерь на фильтрацию. Такие приборы погружаются в русло и держат в памяти объем воды, про текающий через русло потока для последующих измерений (Carr and Winter, 1980). Некоторые из
Глава 6. ПОДЗЕМНЫЕ ВОДЫ

6.6.2.2 Источники воды и ключи

Расход источников и ключей, который представляет собой локализованный расход подземных вод, может быть измерен с применением стандартных процедур по измерению расхода потока (глава 5).

6.6.2.3 Эффекты суммарного испарения на систему подземных вод

Растения с глубокой корневой системой и растения в зонах с неглубоким уровнем воды могут извлекать воду из системы подземных вод. Стандартные методы для определения темпов суммарной испаряемости могут быть использованы в областях, где скорее всего присутствуют грунтовые воды (глава 4).

6.6.3 Откачивание воды из скважины

Откачивание из отдельной скважины и кумулятивный эффект откачивания из многих скважин может оказывать очень существенное влияние на уровень грунтовых вод и систему подземных вод в принципе. Зачастую понижение уровня в оборудованной насосом скважине отражается на близлежащем потоке и меняет его конфигурацию, превращая поток, питаемый подземными водами, в поток, пытающий подземные воды, что подчеркивает важность отслеживания местоположения и эффекта откачивания. Особенно это касается тех скважин, которые используются для водоснабжения, индустриального или коммерческого использования и для орошения в большинстве масштабах. Подсчет количества откачиваемой воды требует подсчета по отчетам владельцев скважин, а в случае отсутствия таких — измерения количества воды, откачиваемой наиболее значимыми пользователями. Процедуры, подробно описанные в разделе 6.4, могут быть использованы для проведения этих измерений. Поскольку откачивание может меняться в зависимости от потребностей пользователей скважин, слежение за этими изменениями требует больших усилий. Можно разработать отношение между расходом насоса и количеством использованного топлива или электричества. Если такие данные доступны, то это может облегчить бремя составления или сбора данных по откачиванию с большого количества скважин.

6.7 ИСПОЛЬЗОВАНИЕ ДАННЫХ В МОДЕЛЯХ ПОДЗЕМНЫХ ВОД

Главная роль модели заключается в интеграции информации гидрологической сети, данных об уровне воды, откачивании, пополнении и расходе воды с целью понимания сравнительной важности различных процессов системы подземных вод и оценки емкости или возможностей системы подземных вод соответствовать общим или конкретным целям (обычно водообеспечения). Повсеместно используемые варианты моделирования разнятся от разработки простого водного баланса до разработки сложных цифровых моделей подземных потоков.
Подробное описание разработки, калибровки и использования таких моделей выходит за рамки данного Руководства, однако методы и подходы для сбора данных, описанные в этой главе и в таблице I.6.3, предоставляют необходимую основу для разработки моделей. Дальнейшее обсуждение вопросы по теме моделирования подземных потоков, так же как и ссылки на тему, представлены в томе II, раздел 6.3.5.2.

<table>
<thead>
<tr>
<th>Таблица I.6.3. Потребности в данных для моделей грунтовых вод</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гидрогеологическая структура</td>
</tr>
<tr>
<td>Гидрологические границы и воздействия</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Распределение гидравлических параметров</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Калибровочные данные</td>
</tr>
</tbody>
</table>

6.8 **ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ** [ГОСМС D]

На данный момент не существует прямых технологий дистанционного зондирования для нанесения на карту зон подземных вод. Однако косвенная информация может быть получена с источников дистанционного считывания.

Технологии дистанционного зондирования, используемые для нанесения областей подземных вод, включают в себя авиационное и спутниковое изображение в видимой, инфракрасной и микроволновой частях спектра. Изображение, полученное со спутника, позволяет очень большие территории и достигает перспективы, невозможной при наземном исследовании или даже фотографировании с не очень большой высоты. Хотя дистанционное зондирование является лишь частью любого гидрогеологического исследования, оно представляет собой очень рентабельный подход для будущего или подготовительного исследования. По причине ненасыщенной зоны почвы большая часть данных не может быть использована напрямую, а требует значительной интерпретации. В результате, заключение о расположении водоносных горизонтов делается на основе анализа свойств поверхности. Важные свойства поверхности включают в себя топографию, морфологию и растительность. Те или иные предположения о характеристиках подземных вод могут быть высказаны на основе ландшафта, схемы дренирования, характеристистик растительности, схемы землепользования, линейных и криволинейных свойств, оттенков и текстур изображения. Структурные свойства, такие как разрывные нарушения, следы разломов и другие линейные свойства могут показывать возможное присутствие подземных вод. Другие свойства, такие как вид породы (например, осадочная порода или определенная обнаженная скальная порода), могут свидетельствовать о наличии потенциальных водоносных слоев. Предположение о наличии неглубоких грунтовых вод могут делаться на основе измерения влажности почвы, изменений типов и мозаики растительности, а также изменений температуры. Зоны пополнения и расхода грунтовых вод в пределах водосборного бассейна могут быть обнаружены по почве, растительности и неглубоко залегающей грунтовой воде или подвешенной грунтовой воде (Engman и Gurney, 1991).

Авиационные методы изучения подземных вод не давно были проведены с использованием датчиков электромагнитной разведки, разработанных для индустрии полезных ископаемых (Engman и Gurney, 1991). Этот тип оборудования использовался для обозначения водоносных горизонтов на карте на глубинах от 200 м (Paterson и Bosschart, 1987).

Аэрофотосъемка, дополненная данными, полученными со спутников Ландсат и СПОТ, широко используется для описания подземных вод, в первую очередь для обнаружения потенциальных источников подземных вод. Этот способ позволяет делать предположения в отношении типов породы, ее структуры и стратиграфии. Инфракрасные изображения представляют ценность для нанесения на карту типа почвы и растительности, а также изменений температуры. Зоны пополнения и расхода грунтовых вод в пределах водосборного бассейна могут быть обнаружены по почве, растительности и неглубоко залегающей грунтовой воде или подвешенной грунтовой воде (Engman и Gurney, 1991).

Аэрофотосъемка, дополненная данными, полученными со спутников Ландсат и СПОТ, широко используется для описания подземных вод, в первую очередь для обнаружения потенциальных источников подземных вод. Этот способ позволяет делать предположения в отношении типов породы, ее структуры и стратиграфии. Инфракрасные изображения представляют ценность для нанесения на карту типа почвы и растительности, а также изменений температуры. Зоны пополнения и расхода грунтовых вод в пределах водосборного бассейна могут быть обнаружены по почве, растительности и неглубоко залегающей грунтовой воде или подвешенной грунтовой воде (Engman и Gurney, 1991).
Пассивная микроволновая радиометрия может быть использована для измерения зеркала подземных вод. Двухчастотный радиометр был использован с воздушного судна для измерения глубины водного зеркала до 2 м во влажных местах и 4 м в засушливых (Shutko, 1982; 1985; 1987).

Радиолокатор работает в любую погоду и может быть использован для нахождения едва различимых геоморфических свойств даже в местности, покрытой лесом (Parry и Piper, 1981). Радиолокатор также способен проникать через слой сухого песка для обнаружения заброшенных дренажных каналов (McCaulay и другие; 1982; 1986) и может предоставлять информацию по влажности почвы (Harris и другие, 1984).

Изображения с радара могут быть использованы для обнаружения воды, которая на несколько дециметров ниже поверхности в засушливых зонах по причине увеличения влажности почвы ближе к поверхности. Короткомассовые радары с небольшим радиусом действия, установленные на средство передвижения или летательный аппарат, предоставляют информацию о глубине для неглубоких залегающих с подземных вод до 5–50 м (Finkelstein и другие, 1987). Формирование радиолокационных изображений возможно сквозь густые тропические леса и осадки, и полученная таким образом информация может быть использована для изготовления геологической карты в целях исследований подземных вод (Engman и Gurney, 1991). Радиолокационное формирование изображений успешно использовалось для обнаружения ранее неизвестных долин и небольших каналов, скрытых под песками пустыни (McCaulay и другие, 1986).

Всесторонний и соответствующий последнему слову техники обзор применения технологии дистанционного зондирования для подземных вод (Meijerink в Schult и Engman, 2000), а также ссылки на ряд приложений включены в нижепредставленный список использованной и дополнительной литературы.

Ссылки и дополнительная литература

Глава 7

КАЧЕСТВО ВОДЫ И ВОДНЫЕ ЭКОСИСТЕМЫ

7.1 ОБЩИЕ ПОЛОЖЕНИЯ

В данной главе рассматриваются основные аспекты отбора проб для определения качества воды и конкретные вопросы, связанные с отбором проб в реках, ручьях, озерах, водохранилищах и подземных водах. Более подробное описание этого вопроса можно найти в ссылках (WMO, 1988; UNEP/WHO/UNESCO/WMO, 1992) и в более специализированных публикациях по качеству биологической воды (American Public Health Association and American Water Works Association, 1999; Genin and others, 1997). Руководство по химическому или изотопному пробоотбору и методам анализа предоставлено в обширном списке литературы, подготовленном Международным агентством по атомной энергии (МАГАТЭ).

7.2 ОСОБЫЕ ТРЕБОВАНИЯ К МОНИТОРИНГУ КАЧЕСТВА ВОДЫ

Существует несколько методов мониторинга качества воды. Мониторинг может осуществляться через сеть стратегически расположенных станций с длинным рядом наблюдений, через повторную выборку краткосрочных обследований или, чаще всего, путем сочетания обоих методов.

При расположении станций и взятии проб следует учитывать следующие факторы:

a) доступность пункта взятия проб и расстояние до лаборатории (для разрушающихся проб);
b) наличие персонала, фондов, средств для обработки полевых и лабораторных данных;
c) межведомственные соображения;
d) тенденции в изменении населения;
e) климат, географию, геологию;
f) потенциальный рост центров (индустриальных и муниципальных);
g) безопасность персонала.

Частота наблюдений зависит от назначения сети, значения, придающегося станции отбора проб, уровня взятия проб, пространственной изменчивости изучаемых параметров, и что самое главное, от имеющихся фондов. При отсутствии достаточной исходной информации частота взятия проб принимается произвольно на основе знания местных условий. Эта частота может быть скорректирована после значительного числа взятых и анализированных проб и после того, как было отмечено, какие вещества присутствуют, в каких концентрациях и какова наблюдаемая изменчивость.

На выбор станции отбора проб также влияют существующее и планируемое использование воды, стандарты или нормы качества речной и озерной воды, доступность потенциальных участков отбора проб (важно, кому принадлежит земля, дороги, взлетные площадки), наличие электричества, наличие данных о качестве воды. Рисунок 1.7.1 показывает очередь действий для выбора участка отбора проб.

7.2.1 Параметры качества воды

Параметры, характеризующие качество воды, могут иметь несколько классификаций. Они могут классифицироваться:

a) по физическим свойствам (таким как температура, электропроводность, цвет, мутность);
b) в качестве элементов состава воды (например, pH, щелочность, жесткость, окислительно-восстановительный потенциал, частичное давление двуокиси углерода);
c) по неорганическим химическим компонентам, таким как растворенный кислород, карбонаты, бикарбонаты, хлориды, фтористые соединения, сульфаты, нитраты, соединения аммония, кальция, магния, натрия, фосфаты и тяжелые металлы;
d) по органическим химикатам (таким, как фенолы, хлорированные углеводороды, полициклические ароматические углеводороды и пестициды);
e) по биологическим компонентам как по микробиологическим, так и по макробиотическим, таким как черви, планктон, рыба и растительность.

7.2.2 Качество поверхностных вод

Часто задачи программы точно определяют оптимальное место для отбора проб в речной или озерной системе. Например, для того чтобы определить влияние притока на реку, в которую он впадает, пункты отбора проб понадобится располагать выше и ниже места впадения притока в реку. В других случаях место и частота взятия проб будут определяться законами загрязнения водоемов или требованиями определенного использования водных объектов, например,
допуск на расход поверхностных вод может определить детали мониторинга, такие как места отбора проб, количество проб, частота проведения анализов и параметры, необходимые для анализа.

Стратегия взятия проб различна для разных видов среды и водных объектов, например: для воды, наносов или биоты. Если цели исследования касаются влияния деятельности человека на качество воды в бассейне данной реки, бассейн может быть разделен на две части — естественную и подвергшуюся влиянию. Последняя может быть впоследствии подразделена на стационарные зоны и зоны, влияние на которые меняется, такие как сельскохозяйственные, зоны проживания людей и промышленные зоны. В изучении кислотных отложений важным фактором является чувствительность земной поверхности к отложениям. Рисунки I.7.2 и I.7.3 дают примеры того, как располагать пробоотборные станции в озерных и речных системах, чтобы они максимально отвечали своему назначению.

Сбор соответствующей информации о районе проведения мониторинга является важным этапом в оценке качества воды. Искомая информация включает в себя геологические, гидрологические и климатические аспекты. Кроме того, актуальными являются демографические условия и планируемое использование воды (существующие водозаборы и сбросы, дренажные скважины, планы ирригации, регулирование стока).

Рисунок I.7.1. Схема для выбора участков отбора проб на качество воды
Глава 7. Качество воды и водные экосистемы

Расстояние вниз по течению до места полного перемешивания поверхностных вод примерно пропорционально скорости течения и квадрату ширины русла реки. На мелководных реках воды достигают вертикальной однородности ниже источника загрязнения. Перемешивание воды по ширине обычно достигается гораздо медленнее. Таким образом, бывает, что на широких реках с быстрым течением на проявлении многих километров от точки поступления загрязнения и вниз по течению реки, полного перемешивания так и не происходит. Озера могут подвергаться вертикально стратификации по причине температуры или поглощения большого количества соленой воды.

Для определения репрезентативности проб в водном сечении реки рекомендуются различные методы, например, шесть проб анализируются в двух экземплярах — в трех местах по ширине реки и на двух глубинах — или пробы берутся на средней глубине через каждую четверть ширины реки, или на других, равных друг от друга расстояния по ширине реки. Если же нельзя получить репрезентативные пробы, рекомендуется выбрать другой участок, рядом с этим или ниже по течению. Другая альтернатива состоит в получении средневзвешенной пробы, составленной из пробы, взятых на вертикалах водного сечения реки.

Продольное перемешивание нерегулярных или циклических сбросов в реку будет иметь второстепенное влияние на положение мест взятия проб. Это влияние должно быть учтено при определении частоты взятия проб и интерпретации полученных данных.

Для озерных станций рекомендуются следующие процедуры: отбор проб в течение 5 дней подряд в самое теплое время года и в течение 5 дней подряд каждые 3 месяца. Другой метод заключается в том, чтобы брать пробы, по крайней мере 6 раз в год, вместе с дополнительной произвольной пробой в течение следующих периодов: во время открытой воды перед летней стратификацией, после летней стратификации в период перемешивания подо льдом, а также в период снеготаяния и дождевых паводков.

Подобным образом, если возможно, следует брать дополнительные пробы в реках после штормов, во время половодья и дождевых паводков. Если построить графическую связь параметров во времени, то среди произвольных колебаний можно заметить циклические вариации.

Для того чтобы обнаружить циклические явления, необходимо, чтобы интервал между взятием проб был не больше одной трети времени самого короткого цикла, и отбирать пробы следует в течение периода, который был бы по крайней мере в 10 раз больше, чем...
своего длительного цикла. Поэтому при начальном обследовании долгосрочные циклы не получают подтверждения, но они станут заметны во время работы сети. Для обнаружения циклических вариаций желательно брать пробы произвольно, т. е. в разные дни недели и в разное время суток.

7.2.3 Качество осадков

Некоторые аспекты качества осадков, особенно оборудования для отбора проб, рассмотрены в разделе 3.16. Обычно участки для взятия проб надо подбирать так, чтобы они давали точную и репрезентативную информацию о временных и пространственных изменениях химических элементов, представляющих интерес. Необходимо принимать во внимание следующие важные факторы: преобладающие направления ветра, источники соединений, представляющие интерес, частоту выпадения осадков (дождя, снега, града) и другие метеорологические процессы, влияющие на осадки. Следует также учитывать местные условия:

a) в пределах 1 км от участка взятия проб не должно быть никаких движущихся источников загрязнения, например: застоявшегося воздуха, наземного или водного транспорта;

b) в пределах 1 км от участка взятия проб не должно быть наземных складов сельскохозяйственных продуктов, жидкого топлива или каких-либо других инородных материалов;

c) пробоотборники должны быть установлены на плоской поверхности земли с ненарушенным почвенным покровом, предпочитательно с травяным, окруженным деревьями, на расстоянии не менее 5 м от пробоотборника. Поблизости не должно быть никаких движущихся источников загрязнения таких, как обработанные поля или дороги без покрытия. Особенно следует избегать зон сильной турбулентности, т. е. зон сильных вертикальных турбулентных потоков, водоворотов с подветренной стороны гор, обдуваемых ветром горных вершин или крыш зданий;

d) в пределах 5 м от участка не должно быть объектов более высоких, чем пробоотборник;

e) если поблизости имеется объект более высокий, чем пробоотборник, то расстояние, на котором он может находиться, должно быть не меньше чем разница в их высоте, умноженная на 2.5. Особое внимание необходимо уделять высотным проводам;

f) коллектор пробоотборника должен быть расположен на высоте не менее 1 м от земляного покрова, чтобы в него попадала как можно меньше песка, пыли или брызг;

g) для автоматических пробоотборников, для их крышек и датчиков, в ряде случаев и для летнего охлаждения и зимнего таннинг требуется электроэнергия. Если используются электролиты, провода не должны быть над головой; если используются генераторы, то их выхлопные трубы должны находиться далеко и с подветренной стороны от коллектора;

h) рассматривая проблему в масштабе континента, надо сказать, что предпочтительно, чтобы участки отбора проб находились в удаленной сельской местности, вдали от источников загрязнения, не менее чем в 50 км с наветренной стороны и в 30 км в других направлениях.

Возможно, не всегда все эти условия могут быть выполнены. При описании станции следует учитывать эти рекомендации и указывать точные характеристики каждого участка, выбранного для отбора проб.

Отбор проб осадков может производиться для каждого эпизода дождя или для месячного периода. В последнем случае пробы дождя хранятся для последующего анализа в течение всего месяца. Анализ проб, взятых во время выпадения осадков, позволяет определить загрязняющие вещества, связанные со штормом, ливнем дождем или снегопадом, а анализ траектории ветра помогает определить вероятные источники загрязнения. Однако этот режим пробоотбора отличается большой чувствительностью. Частота пробоотбора осадков такая же, как при отборе проб поверхностных вод, статистический учет тоже такой же.

7.2.4 Качество подземных вод

Качество подземных вод постоянно меняется и ухудшается в результате человеческой деятельности. Точечными источниками локального загрязнения являются выгребные ямы и септические емкости, коммунальные стоки и сточные емкости, загрязнения с открытых свалок и со свалок с грунтовой засыпкой, стоки с животноводческих ферм, промышленные стоки, охлажденный возвратный сток в поглощающие скважины и утечки с танкеров или трубопроводов. На более значительных территориях может наблюдаться снижение качества подземных вод в результате возвратных вод с мелиорируемых полей, подпитки водоносных горизонтов обработанными сточными водами или загрязненными промышленными стоками, поступления в пресные водоносные горизонты приграничных морских вод или минерализованных вод из других водоносных горизонтов.

Пробы воды могут отбираться как из безнасосных артезианских скважин, так и из скважин, оборудованных...
Глава 7. Качество воды и водные экосистемы

7.2.5 Качество отложений

Большинство изложенных в предыдущих разделах критериев отбора проб применимо и к отбору проб отложений (5.5.3 и 5.5.4). Поэтому здесь будут описаны только некоторые дополнительные рекомендации.

Там, где требуются данные о переносе отложений в реке, участки отбора проб необходимо располагать вблизи водомерных постов с тем, чтобы точная информация о расходе воды в реке могла быть получена в любое время. Следует избегать размещения пробоотборников в реках по течению, поблизости от слияния рек, ибо тогда они могут подвергаться влиянию подпора и заста воды. В реках, слишком глубоких для пересечения, участки отбора проб будут располагать под мостом или под гидрометрической лукой. Если проба берется с моста, то ее обычно берут на той стороне моста, которая выше по течению. Пробоотбор в районе высокой турбулентности, например вблизи волнолома, часто бывает нерепрезентативным. Надо также обращать внимание на скопление твердых наносов и мусора у волноломов, ибо это может сильно отклонять течение и, следовательно, распределение наносов.

Для взятия проб донных отложений в реках с быстрым течением лучшими местами считаются те, где скорость течения минимальна, т. е. на барах в середине реки, при повороте или изгибе русла, на отмели или в других защищенных местах. Участки отбора проб должны быть доступны во время паводков, ибо в это время скорость переноса отложений бывает наименьшей.

Для рек, при определении пика стока загрязняющих веществ, надо рассматривать два случая: a) для загрязнения, идущего из точечного источника, пробоотбор следует проводить во время меженного стока, когда приток загрязнений меньше разбавлен; b) когда загрязнение идет из рассеянных источников, например от стоков с сельскохозяйственных земель, обработанных удобрениями или пестицидами, тогда пробоотбор следует проводить во время паводков, когда загрязняющие вещества вымываются из почвы.

Если одной из целей является определение количества переносимых отложений в речной системе, то следует иметь в виду, что пики концентраций отложений необязательно соответствуют времени пика расходов воды. Кроме того, высокие расходы воды приведут к прогрессивно падающим пиким концентрациям — эффект истощения, происходящий от уменьшения количества материала, способного подвергнуться суспензии. Для озер базовый пробоотборный участок должен быть расположен в географическом центре озера. Если озеро очень большое (площадь > 500 км²), то в таком случае может понадобиться несколько базовых
станций. Если нужен отбор проб наносов разных типов, то можно использовать данные акустического обследования (эхолот) как для определения типов поверхностного материала (песок, гравий, глина), так и для определения наличия подповерхностного расчленения.

Вспомогательные участки отбора проб следует размещать между базовой станцией и устьем главного притока, или между базовой станцией и источниками загрязнения. Пункты отбора обычно размещают вдоль длинной оси озера и на пересекающихся местах поперечниками. Для приблизительного определения качества наносов в озере среднего размера бывает обычно достаточно 3–5 станций. Но для статистической достоверности, видимо, потребуется большее число участков отбора проб.

На частоту пробоотбора в озерах влияет, как правило, низкая концентрация взвешенных наносов. Во время максимума и минимума продуктивности водорослей и во время большого поступления речных наносов, следует использовать ловушки наносов. При повторном пробоотборе донных отложений необходимо учитывать скорость накопления наносов. В зоне умеренно-прохладного климата скорость накопления наносов часто не превышает 0,1–0,2 мм в год, и если нет какого-то нового источника загрязнения и не поступает сколько-нибудь заметной новой информации, то достаточно проводить повторный отбор проб раз в 5 лет.

7.3 МЕТОДЫ ОТБОРА ПРОБ

Отбор проб представляет собой процесс взятия репрезентативного количества воды из реки, озера или колодца. Методы отбора проб определяются рядом факторов, которые включают: материал отбираемой пробы, тип пробы и анализируемый параметр качества, который в свою очередь определяет применяемое оборудование и методы.

Процедуры отбора должны быть адаптированы к различным компонентам. Они подразделяются на:

a) устойчивые: компоненты не меняются со временем;
b) почти устойчивые: компоненты меняются со временем, но могут быть стабилизированы в течение 24 часов или меньше после соответствующей обработки;
c) неустойчивые: компоненты быстро меняются и их невозможно стабилизировать.

Группы a) и b) включают в себя компоненты, которые можно тестировать в лаборатории, а компоненты группы c) тестируются на месте отбора.

7.3.1 Виды проб воды

7.3.1.1 Грейферные пробы

Сбор грейферных проб наиболее подходит в тех случаях, когда требуется охарактеризовать качество воды в конкретном месте. Они также применяются для установления истории данных о качестве воды, основанных на относительно коротких промежутках времени. Грейферные дискретные пробы (локальные) берут в определенном месте и на определенной глубине. Грейферные, интегрированные по глубине пробы, отбирают по всей глубине водного столба и в определенном месте и времени.

7.3.1.2 Составные пробы

Составные пробы получаются путем смешивания нескольких дискретных проб для получения среднего значения качества воды за период отбора. Может быть использован дискретный или продолжительный отбор, и пропорции смешивания рассчитываются на основе времени расхода. Потом часть составной пробы анализируется. Их очевидное преимущество заключается в экономии за счет уменьшения количества пробы, которое следует проанализировать. С другой стороны, составные пробы не позволяют обнаружить изменения элементов, которые происходят за время отбора пробы.

Имеются два основных вида составной пробы — последовательная и пропорциональная потоку.

Последовательная пробы образуется непрерывным, постоянным накачиванием пробы или смешением равных объемов воды, собранных в регулярные интервалы времени.

Проба, составная пропорционально потоку, получается в результате непрерывного накачивания со скоростью потока, пропорциональной потоку, смешением равных объемов воды, собранных с временными интервалами, которые обратно пропорциональны объему потока, или смешением объемов воды, пропорциональных потоку и отобранных через одинаковые временные интервалы.

7.3.2 Отбор репрезентативных проб воды

Для взятия проб на местах, расположенных на однообразном, с хорошим перемешиванием участке русла, может быть достаточным отбор интегрированных по глубине пробы в одной вертикали. Для небольших потоков обычно достаточно грейферной пробы, взятой в центре потока.
В других случаях, может возникнуть необходимость отобрать пробы для разреза русла в ряде точек и глубин. Количество и типы отобранных проб зависят от ширины, глубины, расхода, количества переносимых взвешенных наносов и существующей водной жизни.

Как правило, достаточно использовать от трех до пяти вертикалей, а для мелких и узких потоков требуется еще меньше количество.

Наиболее общим является метод одинаковых приращений по ширине, в котором вертикали располагаются на равном расстоянии по течению. Для метода одинаковых приращений по расходу необходимо знать детальное распределение потока в разрезе, чтобы разбить вертикали, расположенные пропорционально приращениям расходов.

7.3.3 Отбор проб для анализа стабильных изотопов воды

Для завершения изучения качества воды будет интересно рассмотреть стабильные изотопы молекулы воды (кислород-18 и дейтерий). К примеру, в прибрежных зонах анализ стабильных изотопов как в поверхностных, так и в подземных водах, полезен для определения причин солености внутренних вод, которыми являются человеческая деятельность, земледелие или соленая вода выше по течению. Изотопы также помогают определить местоположение водоносных горизонтов, изучить связь подземных и поверхностных вод или определить природные процессы, влияющие на воду, такие как смешивание или испарение. Более подробная информация по использованию стабильных изотопов в связи с этой темой содержится в списке литературы (Mook, 2000).

Изотопный анализ требует специализированных лабораторий, но необходимые процедуры отбора воды довольно просты. Особой процедурой отбора изотопов и их хранения заключается в следующем:

а) необходимо использовать затемненные стеклянные или плотные пластиковые бутылки (от 10 до 60 мл), обычно 50 мл, и герметические колпачки (укрепленные изнутри пластиковой пробкой);

б) необходимо промыть контейнеры для сбора воды 3 раза;

в) необходимо наполнить бутылку до краев во избежание испарения, которому способствует остаточная вода и давление пара. При транспортировке по воздуху бутылки не должны быть переполнены, и крышка должна быть покрыта парафиновой пленкой;

г) пробы снега следует собирать в чистые пластиковые мешки (использовать чистые перчатки), потом их постепенно растапливают перед помещением в контейнеры;

e) пробы льда сохраняют в замороженном состоянии до прибытия в лабораторию;

f) пробы не должны фильтроваться, за исключением случаев, когда они были в контакте с нефтью (используемой для защиты от испарения собранных осадков);

г) пробы могут сохраняться в течение долгого времени (больше года) в прохладных темных местах.

7.3.4 Измерение радиоактивности

Подробные инструкции по анализу радиоизотопов, вопросы качества воды, а также рекомендуемые емкости и методы консервации представлены в ссылках (United States Geological Survey, 1984; IAEA, 2004) и списке дополнительной литературы в конце этой главы.

7.3.4.1 Источники радиоактивности в воде

Радиоактивность в воде может носить естественный и антропогенный характер. Основными природными источниками являются вымывание из горных пород, содержащих радиоактивные минералы, и попадание радионуклидов с космическим излучением. Главные источники искусственной радиоактивности — добыча урана, атомные станции, испытание ядерного оружия и мирное использование ядерных материалов и приборов, например производство энергии.

Основные элементы, поступающие в поверхностные и подземные воды естественным путем, — это уран, радий-226, радий-228, радон, калий-40, тритий и углерод-14. Все они, кроме двух последних, поступают из радиоактивных минералов. В районах с большим количеством радиоактивных минералов главным радиоактивным компонентом, присутствующим в воде, является природный уран. Тритий и углерод-14 образуются путем взаимодействия нейтронов космического излучения с азотом в верхних слоях атмосферы. Тритий (3Н), присутствующий в воде, обычно выпадает вместе с осадками, а радиоактивный углерод связывается в атмосфере с двуокисью углерода.

Эти радионуклиды также образуются при испытании термоядерного оружия и используются для датирования подземных вод (время, прошедшее между расходом водоносного горизонта и отбором воды). Начиная с 1970 года, вероятно, самым большим источником трития стала ядерная энергетика. Основными изотопами искусственного происхождения, присутствующими в воде, являются стронций-90 и цезий-137.

Геохимическое поведение дочерних элементов может существенно отличаться от поведения исходных...
радиоактивных, хотя их распространение, распределе-ние и перенос могут определяться исходным элементом. Международная комиссия по радиологической защите рекомендует их максимально допус-тимую концентрацию в воде.

7.3.4.2 Отбор и консервация проб для радиоактивного измерения

Специальные емкости для проб (обычно четырехли-турные бутылки) делают из полипропилена, полиэтилена или тefлона. Они должны быть заранее (за день) обработаны путем добавления в них концентрированной азотной кислоты, т. е предварительно промыты дезинфицирующим средством и несколько раз сполоснуты чистой водой.

Для трития пробы должны отбираться в пластиковые бутылки высокой плотности объемом от 0,5 до 1 литра.

Для углерода-14, в соответствии со специальными требованиями лаборатории, процедура заключается в том, чтобы взять точно один литр воды в бутылку высокой точности или растворить около 2,5 г осадка в более 100 литрах воды в случае низкого содержания углерода.

Основная проблема, с которой можно встретиться при консервации, заключается в адсорбировании на стенках емкости или на взвешенных структурах. Для анализа всего количества радиационных элементов и уменьшения адсорбции в раствор добавляют 2 мл концентрированной соляной кислоты или одну-процентной азотной концентрации на литр пробы.

Обычно для снижения стоимости анализа целесообразно проанализировать годовую комплексную пробу, полученную путем смешивания месячных проб.

При существенном превышении уровня радиоактивности над фоновым, образующие комплексную пробу образцы на радиоактивность обрабатывают отдельно, для того чтобы определить разделен(ые), который(-ые) имеет(-ют) более высокий, чем ожидалось, уровень радиоактивности.

7.3.5 Оборудование и методика отбора проб в полевых условиях

7.3.5.1 Грейферные пробоотборники

Пробоотборники для взятия грейферных проб можно разделить на те, которые пригодны только для нелетучих компонентов и те, которые можно использовать для растворенных газов и других летучих компонентов. Для обоих видов имеются пробоотборники дискретные (поверхностные или для заданной глубины) и интегрированные по глубине. Оба вида можно использовать при отборе воды для определения нелетучих компонентов.

Приблизительно интегрированную по глубине пробу можно получить, опуская открытое пробоотборное устройство на дно водного объекта и поднимая его на поверхность с постоянной скоростью таким образом, что емкость становится наполненной, только достигнув поверхности. Для этой цели могут использоваться жесткие пробоотборники. Они представляют собой устройства, иногда железные, которые применяются для крепления бутылей. Бутыли для проб помещаются в жесткий каркас и закрепляются держателем за горлышко. В некоторых случаях жесткий пробоотборник может снабжаться грузами для увеличения веса, чтобы обеспечить вертикальное положение при сильном течении.

Невозможно взять интегрированную по глубине пробу на мелких потоках с недостаточной для этого глубиной. В таких случаях пробу следует отбирать осторожно, не касаясь дна. Можно вырыть углубление на дне, подождать осаждения взвеси и взять пробу у верхней границы углубления.

Дискретные пробоотборники применяются для взятия проб с определенной глубины. Соответствующий пробоотборник опускается на заданную глубину, при водится в рабочее положение, а затем возвращается к исходному положению. Для этих целей часто применяются пробоотборники Ван-Дорна, Кеммерера и насосный:

a) бутылка Ван-Дорна: бутылка Ван-Дорна (рисунок 1.7.4) предназначена для отбора проб на глубине от двух метров. Горизонтальный тип следует применять при взятии проб у дна, у границы раздела водных масс;

b) пробоотборник Кеммерера: пробоотборник Кем-
мерера — один из самых старых видов вертикальных пробоотборников, применяемый обычно на глубинах свыше одного метра. Пробоотборник Кеммерера (рисунок I.7.5) берет пробы объемом от 0,5 до 8 литров;

c) насосные пробоотборники: существует три вида насосов для отбора проб с заданных глубин: диффрагмальный, перистальтический и роторный. Обычно диффрагмальный насос — ручной, а перистальтический и роторный — электрические, поэтому их применение в полевых условиях значительно ограничено. Перистальтический насос не рекомендуется применять для отбора проб на анализ хлорофилла, поскольку может иметь место нарушение частиц водорослей. Все насосы должны иметь конструкцию, не загрязняющую пробу воды. Входное и выходное отверстия шлангов также должны быть чистыми.

Бутылка Ван-Дорна имеет преимущество перед пробоотборником Кеммерера в том, что ее крышка не мешает потоку воды проходить через пробоотборник, так как в противном случае это может привести к завихрениям и нарушениям структуры потока.

Батометр с несколькими бутылками (рисунок I.7.6) позволяет одновременно брать в точке несколько проб одного и того же или различного объема. Каждая проба собирается в свою бутылку. При взятии проб одинакового объема можно получить информацию о мгновенной изменчивости на основе сравнения дубликатов проб. Пробоотборник может быть предназначен для различного количества бутылей и их объёмов, в соответствии с требованиями специальных программ. Это достигается изменением размера чашек, длины чашечных втулок и конфигурацией и размером отверстий на чистой акриловой верхней части.

7.3.5.2 Пробоотборники для проб на растворенный кислород

Типичный пробоотборник для определения концентрации растворенного кислорода и биохимической потребности в кислороде (БПК) показан на рисунке I.7.7. Его нужно вытаскивать открытым, в результате чего возможно попадание смеси из верхних слоев. Когда грейферные пробоотборники определенного вида снабжены донными дренажными трубками, они могут применяться путем заполнения пробы через дно емкости для анализа. Пробы должны отбираться в бутыли с узким горлом для БПК, которые имеют скосшенные стеклянные крышки во избежание проникновения в пробу воздуха. Этим пробоотборником нежелательно брать пробы на мелких потоках. В ином случае перемешивание следует уменьшить, аккуратно отклоняя бутылку БПК вниз по течению.

7.3.5.3 Автоматические пробоотборники

Диапазон автоматических пробоотборников варьируется от сложных устройств с изменяющимися программами отбора проб, которым нужен внешний энергоисточник и постоянное помещение, до простых портативных самообеспечивающих приборов, таких как погруженная бутылка с интенсивностью
заполнения, определяемой медленным выходом воздуха. Часто эти устройства запрограммированы на отбор каждые 24 часа.

При необходимости проведения частых измерений они снижают затраты на эти работы. Если на гидрометрическом створе установлен автоматический измеритель расхода, некоторые автоматические пробоотборники могут отбирать пробу пропорционально стоку. Имеются как составные (измеряющие расход и отбирающие пробу), так и отдельные модели пробоотборников.

7.3.5.4 Влияние местоположения станции и времени года на порядок отбора проб

В полевых условиях различные ситуации, возникающие при отборе проб, требуют различных практических приемов. В следующих разделах рассмотрены некоторые практические приемы отбора проб, связанные с сезоном и размещением точек отбора проб. Практические приемы отбора проб более подробно рассматриваются в Manual on Water Quality Monitoring: Planning and Implementation of Sampling and Field Testing (Руководство по мониторингу качества воды: планирование и применение методов отбора проб и тестирования в полевых условиях) (WMO-No. 680).

Зачастую более предпочтительно производить отбор проб с моста из-за легких подходов и безопасности при всех стоковых и погодных условиях. Однако транспортные средства на мостах представляют другой потенциальный источник опасности, который следует учитывать.

Использование лодок дает больше возможностей и благодаря их использованию снижается время передвижения между точками отбора проб. Точки отбора должны быть отмечены триангуляционными знаками с береговых вещей, при установке которых необходимо учитывать наличие судоходства, паводков и штормовых условий (раздел 8.5). Самолеты и вертолеты — очень дорогой, но быстрый и надежный способ передвижения. Испытания показали, что волнение воды от вертолетов незначительно влияет даже на содержание растворенного кислорода в пробах воды. Пробы с берега следует брать только при отсутствии других возможностей. Пробу необходимо брать в месте с высокой турбулентностью или там, где глубоко и быстрое течение. Жесткие пробоотборники часто применяются при взятии проб воды с берега или с пристаней.

Взятие проб снега и льда в зимних условиях требует применения несколько отличной методики. Следует соблюдать меры предосторожности, описанные в разделе 8.9. Необходимо также очистить лежащий на льду снег, чтобы обеспечить соответствующую рабочую площадку.

7.4 ПОДГОТОВКА К ВЫЕЗДУ В ПОЛЕ

7.4.1 Общая подготовка

a) получить специальные инструкции по методике отбора проб;
b) подготовить маршрут в соответствии с планом отбора проб (см. также раздел 2.4.3.);
c) подготовить перечень необходимого оборудования и материалов;
d) обеспечить наличие бутылей для отбора проб, вымытых в соответствии со стандартными процедурами;
e) обеспечить подготовку в лаборатории химических реактивов и других компонентов, необходимых для данной полевой работы;
f) подготовить контрольный перечень (см. ниже раздел 7.4.3).

7.4.2 Определение объема пробы

Объемы конкретных проб зависят от типа и количества анализируемых параметров, от аналитического метода обработки и от предполагаемой концентрации элементов в воде. Персонал лаборатории определяет необходимый объем пробы. Требуемый объем можно установить путем перечисления всех определяемых параметров и добавляя объем, необходимый для подготовки и анализа, полученную величину затем умножают на два для двойного и три для тройного анализа. Следует помнить следующие моменты:
Глава 7. КАЧЕСТВО ВОДЫ И ВОДНЫЕ ЭКОСИСТЕМЫ

7.4.3 Перечень контрольных мероприятий перед полевыми работами

а) проверить и откалибровать измерительные устройства (pH, удельной проводимости, растворенный кислород, мутность) и термометры;

б) пополнить запасы реактивов для определения растворенного кислорода и реагентов для химической консервации пробы;

в) получить чистый защитный раствор. Величина pH для него не должна быть близкой к предполагаемой величине pH пробы;

г) получить раствор KCl для проб на pH;

д) получить карту местности, описание размещения пунктов отбора проб, полевые салфетки, бутыли для проб, бирки, пробоотборное оборудование, консерванты, пипетки и руководства по использованию оборудования;

е) получить канцелярские принадлежности, дополнительные веревки и набор инструментов;

ж) если полевое оборудование имеет электропитание, получите электрические кабели;

з) получить дистиллированную воду (сопротивляемость 18,2 МΩ) для определения pH, чистых и буферных измерений;

и) при необходимости фильтрования, получить фильтрующее устройство;

к) если необходимо взять пробы для микробиологических исследований, получить стерильные бутыли и ящики со льдом, которые рекомендуются для хранения проб;

л) проверить содержание аварийного снаряжения и комплекта для оказания первой помощи.

7.5 ПОЛЕВЫЕ ИЗМЕРЕНИЯ

7.5.1 Автоматический мониторинг

Один из видов мониторинга предусматривает откачивание воды и проведение измерений на берегу. Другие устройства используют зонды, погружаемые в воду, которые проводят измерения непосредственно на заданной глубине. Самым современным является устройство с автономным питанием на батареях, которое может работать на глубине до 300 м.

В настоящее время автоматически измеряются следующие параметры: pH, температура, удельная проводимость, мутность, растворенный кислород, хлориды, окислительно-восстановительный потенциал, уровень воды, интенсивность солнечного света и ультрафиолетовая поглощаемость.

7.5.2 Параметры, измеряемые в полевых условиях

Удельная проводимость, pH, растворенный кислород, температура, мутность, цвет и прозрачность могут изменяться при хранении пробы и поэтому должны измеряться в полевых условиях, по возможности, сразу после отбора пробы.

Наблюдатель, берущий пробу, должен отмечать все необычные проявления или отклонения от предшествующего состояния на водном объекте. Эти наблюдения за качеством воды могут включать: необычный цвет, запах, пленки на поверхности и плавающие предметы. Следует отмечать также любые специфические условия окружающей среды, например: дождь, сильный ветер, паводок или вскрытие ледяного покрова.

7.5.2.1 Измерение pH

Величина pH незагрязненных природных вод зависит от условий равновесия ионов двуокиси углерода, карбоната и гидрокарбоната. Концентрация двуокиси углерода может существенно меняться в результате изменения границы раздела воздух–вода или в результате фотохимических процессов. Изменения pH вызываются кислотными дождями, сбросами промышленных и гидрологических факторов. Величина pH является важным критерием качества воды, поскольку она оказывает влияние на водную жизнь и на возможность использования воды. Поскольку pH зависит от температуры, измерение должно быть строго связано с температурой пробы в момент отбора. Определение величины pH желательно проводить в точке отбора пробы, используя цифровой измеритель прямого визуального сравнения. Определение pH возможно использовать также колориметрическим способом при помощи индикаторов pH и буферных растворов путем визуального или колориметрического сравнения. Обычно этот метод менее точен, чем электрометрический, и ограничен...
использованием воды с низким содержанием красящих веществ и незначительной мутностью. При полевых измерениях измеритель следует заранее откалибровать по стандартному буферному раствору в соответствии с руководством по использованию. Необходимо выявлять температуру буферного раствора и электродов путем погружения бутылей с буферным раствором и электродов в пробу воды.

Особую осторожность следует проявлять в целях предотвращения попадания воды в бутыли с буферным раствором и в отверстие эталонного электрода. Если электроды давно не использовались или содержались в течение нескольких дней сухими, может понадобиться от 10 до 20 минут для стабилизации температуры. Следует оберегать измеритель от экстремальных температурных изменений при измерении, поскольку это влияет на устойчивость электронной системы и точность измерений.

Если комбинированные устройства электродов долго находились в сухом состоянии, стеклянную мембрану необходимо намочить в растворе KCl (3 моль·л\(^{-1}\)) за 12–24 часа до применения. Измерители могут иметь резервуар для хранения зонда, который должен заполняться электролитом. Неправильно подготовленные перед использованием стеклянные электроды могут не стабилизироваться и потребуют частой калибровки.

Если измеритель pH показывает плавное отклонение, а зонд заполнен и правильно подготовлен, необходимо сам зонд заполнить дополнительным раствором KCl (3 моль·л\(^{-1}\)).

В том случае, когда происходит постоянное отклонение, следует заполнить электрод гидроксидом аммония. Зонд, как и любую другую часть оборудования, необходимо постоянно оберегать от загрязнения, низкой температуры и неосторожного обращения.

7.5.2.2 Измерение электропроводности

Электропроводность является показателем солености и концентрации неорганических оснований ионов, растворенных в воде. Для большинства природных вод существует линейная зависимость между содержанием растворенных солей и электропроводностью.

Более предпочтительно измерять электропроводность непосредственно на месте. Измеритель электропроводности, показания которого зависят от температуры, должен выдать измеренное значение, соответствующее либо принятой температуре (обычно 20 или 25 °C), либо температуре взятой пробы, которая должна быть измерена одновременно. Это важно для расчета и сравнения электропроводности пробы в заданное время.

Перед измерением контейнера для пробы должны быть несколько раз промыты той же водой, из которой отбиралась прoba. Нельзя использовать для измерения электропроводности ту же пробу, которая использовалась для измерения pH, поскольку в ней происходит диффузия KCl из-за pH-электрода.

Калибровку измерителя электропроводности нужно выполнять перед каждым полевым измерением. Для этого должен использоваться стандартный раствор KCl с удельной электропроводностью, близкой по величине к ожидаемой при полевых измерениях. Устройство для измерения электропроводности требует осторожного обращения и обслуживания, предъявляемого ко всем чувствительным приборам. Точность показаний требует защиты измерительного устройства от грязи, ударов и низкой температуры.

Точность измерения зависит от типа измерительного устройства, способа тарировки и от фактической величины электропроводности пробы воды. При правильном выборе и точной тарировке измерительного устройства погрешность измерения составляет ±5 % от диапазона изменения электропроводности, если температура находится в пределах 0–40 °C, и температурная поправка вводится автоматически.

7.5.2.3 Измерение растворенного кислорода

Концентрация растворенного кислорода является важным показателем для оценки качества поверхностных и обработанных сточных вод.

Существует два метода измерения растворенного кислорода: первый осуществляется на месте измерения с помощью полярографического или потенциометрического (оксиметр) зонда. Второй — с помощью химического анализа Винклера. В методе Винклера добавление реактива (раствор Mn\(^{++}\) и стандартный раствор йода) в пробу в момент ее забора способствует фиксации кислорода. Впоследствии анализ будет произведен в лаборатории на пробе, хранящейся в темноте. Существует также полевой метод, основанный на том же принципе, а именно метод Хача, использующий предварительно дозированные реактивы.

Поскольку концентрации могут существенно меняться в течение дня, рекомендуется проводить измерения на месте.

Для химического метода три пробы воды должны быть отобраны для пробоотбора растворенного кислорода (раздел 7.3.5.2). Концентрация растворенного кислорода измеряется счетчиком РК или методом
Глава 7. Качество воды и водные экосистемы

7.5.2.4 Измерение температуры

Для измерения температуры воды применяются термометры различных типов: спирто-толуоловые, ртутные или электротермометры. Последняя категория включает термопары и менее портативные виды — термисторы, кварцевые и термометры сопротивления. Некоторые измерительные приборы, например для измерения растворенного кислорода, pH, окислительно-восстановительного потенциала или удельной проводимости, снабжены устройством для определения температуры.

При использовании термометра его сначала поливают частью пробы, а затем погружают в пробу приблизительно на 1 минуту или до стабилизации его показаний. Нельзя помещать термометры в емкости с пробой, которые направляются в лабораторию. Значение температуры регистрируют в полевых бланках в градусах Цельсия.

Обычно точность измерения температуры не превышает 0,1 °C, а во многих случаях вполне приемлемой оказывается точность наблюдений за температурой воды в 0,3 °C, иногда же она может приближаться к 1 °C. Поэтому важно точно определить требования, предъявляемые к точности измерения, чтобы выбрать соответствующий тип термометра.

7.5.2.5 Измерение мутности

Мутность является оптической мерой взвешенных частиц в пробе воды, таких как глина, ил, органические частицы, планктон и микроскопические организмы. Мутность оказывает влияние фактически на все виды водопользования и увеличивает затраты на оборотку воды. По возможности мутность следует измерять в точке. Для измерения мутности используют визуальный метод (в единицах мутности Джексона или JTU) или нефелометрический метод (в нефелометрических единицах мутности или NTU). При применении мутномера Джексона определяется расстояние, на котором теряет очертания световой объект и сравнивается со стандартными взвесями.

Нефелометрический метод является более предпочтительным, поскольку он обладает большей точностью, чувствительностью и применяется в большинстве диапазоне мутности. Однако разные конструкции приборов могут дать различные результаты для одной и той же пробы. К ошибке может привести цвет пробы, так как будет изменяться интенсивность источника света. Эти проблемы можно уменьшить, применяя устройство, которое одновременно измеряет рассеяние и прохождение света, преобразуя затем их в расстояние.

Для работы измерителя мутности готовят тарировочные кривые для каждого диапазона при помощи соответствующих стандартов. Испытывают по крайней мере один стандарт в каждом используемом диапазоне, добиваясь от измерителя мутности стабильных результатов во всех диапазонах чувствительности. Перед проведением анализа пробу интенсивно встряхивают. Снятие показаний всегда производится через один и тот же промежуток времени, который требуется для того, чтобы проба стала однородной (например, 10 секунд), что гарантирует единообразие результатов. Важно быстро вылить пробу и три раза выполнить измерение мутности.

Характеристика каждого прибора для измерения мутности зависит от частоты тарирования по стандартному раствору формазина и от способа подготовки пробы. Как правило, нефелометры, используемые в лабораторных условиях, должны давать точность в пределах ±1 ЕМФ (единица мутности формазина) в диапазоне 0–10 ЕМФ и ±5 ЕМФ в диапазоне 0–100 ЕМФ при 95 % доверительном уровне. Точность абсорбциометров существенно колеблется, но должна составлять, по меньшей мере, 10 % для любого данного диапазона мутности.

При практическом использовании прибора для измерения мутности его характеристика зависит, в большей мере, от оптической конфигурации, а для
приборов, измеряющих мутность проточных вод с непрерывной записью, их характеристика зависит от способности выдерживать загрязнение оптических поверхностей водорослями и отложениями наносов, которые влияют на тарировку и чувствительность.

7.5.2.6 Измерение цвета воды

Истинный цвет наблюдается после фильтрации или очистки на центрифуге. Цвет определяется присутствием в воде ионов металлов, гумуса и торфяных материалов, планктона и промышленных стоков. Цвет является важной характеристикой воды для питьевых нужд, мытья и обработки, а также для рекреационных целей.

Исходному цвету природной воды может соответствовать смесь хлороплатиновой кислоты и гексагидрата хлорида кобальта. Но поскольку этот способ сравнения не очень удобен для полевых условий, цвет определяют визуально, сравнивая стандартные цветные стеклянные диски с цветом отобранной пробы.

Вода, смешанная с промышленными отходами, может так сильно отличаться от платиново-кобальтовой смеси, что сравнение выполнить невозможно. В этих случаях используют фотометр с фильтром или, при обработке пробы в лаборатории, — двухлучевой спектрофотометр.

7.5.2.7 Измерение прозрачности

Прозрачность воды определяется ее цветом и мутностью. Значение прозрачности представляет собой глубину в метрах, на которой диск диаметром 20–30 см, называемый диском Секки и обычно окрашенный в виде черных и белых квадратов, становится невидимым при медленном, вертикальном погружении в воду. Иногда вместо диска применяют вид стандартной раскраски на белой бумаге. Эти измерения обычно проводятся на озерах и других глубоких водных объектах и полезны для оценки биологических условий.

7.5.2.8 Общие резюме полевых измерений

Несмотря на заинтересованность в измерении тех или иных параметров, на всех станциях должны выполняться стандартные работы. На каждой станции следует придерживаться следующих основных процедур:

a) тарировать измерительные устройства;

b) стандартизировать тиосульфат натрия при применении метода Винклера для измерения растворенного кислорода;

c) выполнять полевые измерения или измерения на месте рН, электропроводимости, растворенного кислорода, температуры и мутности;

d) ополаскивать все емкости водой для пробы, за исключением бутылей с консервантом, и используемых для измерения растворенного кислорода и бактериального анализа;

e) отбирать и консервировать пробы в соответствии с инструкцией по наставлению;

f) правильно заполнять полевые бланки в соответствии с инструкцией по наставлению;

g) упаковывать емкости для пробы в специальные контейнеры;

h) помечать тару и заполнять полевые бланки, записывая всю необходимую информацию.

7.6 БИОМОНИТОРИНГ И ОТБОР ПРОБ ДЛЯ БИОЛОГИЧЕСКОГО АНАЛИЗА

Мониторинг окружающей среды в основном базируется на методах физико-химического анализа, используемых для оценки концентрации загрязняющих веществ, осадков и живущих в воде организмов. Главное неудобство этих методов — недостаток информации о фактическом химическом воздействии на живые организмы. К тому же, невозможно обнаружить определенные группы токсичных загрязняющих веществ. Это происходит, потому что:

a) эти молекулы влияют на живые организмы в концентрациях ниже пределов обнаружения;

b) это могут быть совершенно новые молекулы;

c) эволюция этих токсичных загрязняющих веществ в окружающей среде мало известна (в данном случае проблема заключается в выявлении побочных продуктов для анализа).

Таким образом, большее разнообразие потенциальных загрязняющих веществ окружающей среде делает эти методы очень дорогостоящими. Если выполненный химический анализ позволяет сделать вывод о существовании или отсутствии загрязнителя в различных частях экосистемы (вода, почва, осадок или организмы), он в любом случае недостаточен для предсказания годового влияния токсичных веществ на организм, поскольку многочисленные взаимодействия между загрязняющими веществами и загрязняющими веществами/организмами не рассматриваются. В биологический анализ можно интегрировать взаимодействия между всеми присутствующими загрязнителями, и он поможет более реалистично определить воздействие загрязняющих веществ на живущие в экосистеме организмы.

Биомониторинг — это изучение реакции всех степеней биологической организации (мOLEкулярной, биохимической, клеточной, физиологической, гистологической, морфологической и экологической) на загрязняющие...
вещества. Данное определение (McCarthy and Shugart, 1990) выделяет следующие уровни наблюдения:

а) на внутрииндивидуальном уровне биомаркер — это биологическая реакция, обнаруженная на уровне ниже индивидуального для вещества, присутствующего в продукте окружающей среды (van Gestel and van Brummelen, 1996). Эта реакция, измеряемая в организме или его продуктах, показывает изменение в нормальном состоянии, например изменение ферментативной активности по причине защитного процесса организма. Биомаркеры — это также особые молекулярные, биохимические, физиологические и морфологические изменения в популяции животных и растений, наблюдаемые после воздействия на них загрязняющих веществ;

б) на индивидуальном уровне или уровне организмов биомаркер проявляется в измерении жизнедеятельных функций биологического существа, которое, по причине его экологического своеобразия, реагирует на загрязнитель с соответствующей особой модификацией его жизнедеятельных функций (Kirschbaum and Wirth, 1997), например изменение роста беспозвоночного организма;

в) на уровне популяций и поселений гидробиологический анализ получает интегративные данные о глобальном качестве воды. Есть биологические показатели, позволяющие исследовать все или часть видов, населяющих экосистему, и изменения их состава и структуры вследствие воздействия антропогенного фактора. Таким образом, можно определить качество классов посредством нормализованной описи определенных видов. Например, биологический индекс окружающей среды использует беспозвоночную фауну как интегратор окружающей среды; стандартизированный пробоотбор, рассматривающий разные типы ареалов расселения, отражает качество экосистемы с точки зрения присутствия или отсутствия групп фаunistических индикаторов.

7.6.1 Микробиологический анализ

Присутствие в воде живых фекальных бактерий кишечной группы характеризует недостаточную обработку сточных вод. Всемирная организация здравоохранения требует, чтобы в питьевом водоснабжении использовалась вода, в которой полностью отсутствуют бактерии кишечной группы и особенно фекальные кишечные палочки. На заболевания людей влияет присутствие в воде и других микроорганизмов, например возбудителей холеры и тифа, сальмонеллы, а также некоторых одноклеточных организмов, вызывающих заболевания.

Для того чтобы наиболее точно отразить микробиологические условия в период отбора проб очень важно, чтобы все пробы, переданные на микробиологический анализ, отбирались как можно более стерильно.

Микробиологические пробы обычно отбирают в стерильные бутыли с широким горлом и винтовой крышкой, емкостью 200 или 500 мл, сделанные из стекла или нетоксичной пластмассы. Пластиковые емкости необходимо проверить на выделение микроскопических частиц, которые могут помешать подсчету некоторых видов бактерий. Металлические и некоторые резиновые емкости могут вызывать бактериостатический эффект. В завинчивающуюся крышку бутыли должна вставляться прокладка из силиконовой резины, выдерживающая нагревание в автоклаве. Если бутыль имеет пробку, то ее горлышко следует покрыть прочной бумагой или алюминиевой фольгой, которые необходимо закрепить с помощью бечевки или эластичного кольца.

По возможности пробы воды следует анализировать сразу же после отбора. Если немедленная обработка невозможна, хранение проб следует проводить в темном и холодном месте. Хранение в таких условиях снижает до минимума размножение и отмирание микроорганизмов в течение 30 часов после отбора пробы. Пробы нельзя замораживать. Если существует подозрение на то, что содержание тяжелых металлов в пробе, таких как медь, никель или цинк, превышает 0,01 мг·л⁻¹, то их бактериостатическое и бактерицидное влияние следует уменьшить путем добавления 0,3 мл 15 % раствора на 125 мл пробы изолирующего реагента, например этилендиаминтетрациклической кислоты (EDTA) (Moser and Huibregtse, 1976). Оставшийся хлор редко встречается в природных
водах, но если присутствует, его следует удалить путем добавления 0,1 мл 10 % раствора тиосульфата натрия на каждые 125 мл пробы.

7.6.2 Макробиота

Существует несколько категорий многоклеточных видов, за которыми по ряду различных причин должен осуществляться постоянный мониторинг. Рыба, как основа водной пищевой цепочки, является показателем разнообразия условий качества воды, которое определяется ее видом и возрастом. Придонные макробеспозвоночные (организмы, живущие у дна, которые определяются стандартным ситом) являются индикатором современного загрязнения, поскольку имеют низкую подвижность и чувствительность к стрессам. Перифитон — сидячие растения, которые покрывают большую часть дна и могут препятствовать сходству и рекреационному использованию водоемов. Макрофиты — крупные растения, которые популяризируют органические вещества, и планктон — мелкие, свободно плавающие растения и животные. Макробиота и планктон необходимы для консервации образцов макробиоты, приведен в таблице I.7.1. Некоторые практические специалисты для перифитонов и планктона предпочитают формальдегид растворяют ляламию. Рекомендуется перед анализом добавлять в пробы специальные красящие вещества, например бенгальский розовый. В последнее время законсервированные живые организмы могут быть определены даже персоналом без особой специальной подготовки, поскольку краситель делает их очень заметными на цветном фоне. Перечень методов, рекомендуемых для консервации образцов макробиоты, приведен в таблице I.7.1. Некоторые практические специалисты для перифитонов и планктона предпочитают формальдегид растворяют ляламию.

7.6.3 Биохимическая потребность в кислороде

Сброс загрязняющих органических веществ в водные объекты приводит к естественной очистке воды в результате процесса биохимического окисления. Биохимическое окисление является микробиологическим процессом, в котором загрязняющие вещества используются как источник углерода и растворенного в воде кислорода потребляются микроорганизмами. Скорость очистки зависит от многих условий, в том числе от температуры воды и природы органического вещества. Количество растворенного кислорода, поглощенное определенным объемом воды в процессе биохимического окисления в течение пяти дней при температуре 20 °С, является мерой качества воды и называется биохимической потребностью в кислороде, или БПК. Процесс окисления не завершается по истечении пяти суток, поэтому для некоторых целей могут использоваться более длительные инкубационные периоды. Принятый период может указываться индексом, например БПК 5 или БПК 20, а биохимическая потребность в кислороде выражается в миллиграммах кислорода на литр воды.

БПК определяется как общее количество кислорода, необходимое микроорганизмам для окислительного разложения органического вещества. Скорость биохимического окисления пропорциональна количеству органического вещества, сохраняющегося в воде еще в неокисленном состоянии. Таким образом показатель
Таблица I.7.1. Общепринятые методы консервации проб

Биологический анализ. Биологические параметры обычно определяются количественно и иногда изменяются от одного биологического вида к другому. Поэтому невозможно составить полный перечень мер предосторожностей, которые следует соблюдать при консервации проб для данного вида анализа. Информация, приведенная ниже, относится только к определенным обычно исследуемым параметрам для различных животных и растительных групп. Следует отметить, что перед выполнением любого детального исследования важно выбрать параметры, представляющие наибольший интерес.

<table>
<thead>
<tr>
<th>Подсчет и определение</th>
<th>Природные беспозвоночные</th>
<th>Рыба</th>
<th>Макрофиты</th>
<th>Перифитон</th>
<th>Фитопланктон</th>
<th>Зоопланктон</th>
<th>Чистая сухая масса</th>
<th>Масса золы</th>
<th>Микрофиты</th>
<th>Фитопланктон</th>
<th>Зоопланктон</th>
<th>Рыба</th>
<th>Масса золы</th>
<th>Микрофиты</th>
<th>Фитопланктон</th>
<th>Калориметрия</th>
<th>Природные беспозвоночные</th>
<th>Фитопланктон</th>
<th>Зоопланктон</th>
<th>Тесты на токсичность</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Пластик или стекло</td>
</tr>
<tr>
<td></td>
<td>Добавление этанола</td>
<td>Добавление на литр 10 % формальдегида, 3 г декагидрата бористого натрия и 50 мл глицерина</td>
<td>Добавление 5 % формальдегида</td>
<td>Добавление 5 % нейтрального формальдегида и хранение в темноте</td>
<td>Добавление 5 % нейтрального формальдегида и хранение в темноте</td>
<td>Добавление 5 % формальдегида и растворы люголя</td>
<td>Охлаждение до 2-5 °C</td>
<td>Фильтрация и охлаждение до 2-5 °C</td>
<td>Охлаждение до 2-5 °C, затем фильтрация и хранение в сушильном шкафу</td>
<td>Фильтрация и охлаждение до 2-5 °C</td>
<td>Охлаждение до 2-5 °C</td>
<td>Охлаждение до 2-5 °C</td>
<td>Охлаждение до 2-5 °C, затем фильтрация и хранение в сушильном шкафу</td>
<td>Фильтрация и охлаждение до 2-5 °C</td>
<td>Заморозка до -20 °C</td>
<td>Заморозка до -20 °C</td>
<td>Фильтрация и заморозка до -20 °C</td>
<td>Охлаждение до 2-5 °C, затем фильтрация и хранение в сушильном шкафу</td>
<td>Охлаждение до 2-5 °C</td>
<td>Заморозка до -20 °C</td>
</tr>
<tr>
<td></td>
<td>Лаборатория</td>
<td>Лаборатория</td>
<td>Лаборатория</td>
<td>Лаборатория</td>
<td>Лаборатория</td>
<td>Лаборатория</td>
<td>На месте или в лаборатории</td>
<td>Лаборатория</td>
</tr>
<tr>
<td></td>
<td>1 год</td>
<td>1 год</td>
<td>1 год</td>
<td>1 год</td>
<td>6 месяцев</td>
<td>6 месяцев</td>
<td>24 часа</td>
<td>6 месяцев</td>
<td>6 месяцев</td>
<td>6 месяцев</td>
<td>6 месяцев</td>
<td>6 месяцев</td>
<td>24 часа</td>
<td>6 месяцев</td>
<td>24 часа</td>
<td>6 месяцев</td>
<td>36 часов</td>
<td>36 часов</td>
<td>36 часов</td>
<td>36 часов</td>
</tr>
</tbody>
</table>

`Этот анализ желательно выполнять как можно быстрее`
БПК используется для оценки величины и скорости процесса раскисления, происходящего в водном источнике или озере, в которые поступают органические вещества. Но, кроме поступления органических веществ, на процесс раскисления могут оказывать влияние и другие факторы, не учитывающиеся при определении БПК. Например, взвешенный органический материал может оседать на дно реки и медленно перемещаться вниз по течению от места сброса, и уже в сравнительно отдаленных местах оказывать влияние на содержание растворенного кислорода. Присутствие бентоса, корней растений и планктонов также влияет на режим растворенного кислорода.

Серьезные осложнения в определении БПК возникают из-за присутствия в воде нитрифицирующих бактерий, которые будут окислять аммиак и органические соединения азота в нитриты и нитраты. Промышленные стоки также могут создавать трудности из-за потенциально высоких концентраций загрязняющих веществ, которые в естественных условиях могут сдерживать биохимическое окисление в принимающих водах. При таких обстоятельствах проба может нуждаться в разбавлении чистой водой и посеве добавки из канализационных вод, которые содержат активные микроорганизмы, необходимые для начала процесса биохимического окисления. Могут разрабатываться специальные методы приготовления проб, соответствующие этому анализу.

7.6.3.1 Методы измерения

Разработаны различные методы измерения БПК. Одним из методов, получивших наибольшее распространение, является метод разбавления, при этом манометрические методы, которые в основном используются в научно-исследовательских целях, при определенных обстоятельствах проба может нуждаться в разбавлении чистой водой и в посеве добавки из канализационных вод, которые содержат активные микроорганизмы, необходимые для начала процесса биохимического окисления. Могут разрабатываться специальные методы приготовления проб, соответствующие этому анализу.

Фильтрация пробы рекомендуется для отделения растворенных веществ от взвешенных частиц. Фильтрация при помощи центрифуги требует большого количества дополнительного оборудования, а фильтрация путем осаждения — большего времени. Оба способа трудно калибруются и могут увеличить вероятность загрязнения пробы. В полевых условиях фильтрацию следует выполнять во время или непосредственно после отбора проб и заканчивать соответствующим процессом консервации.

7.6.3.2 Точность измерения

Показатель БПК по своей природе является довольно неточным. Доля водников статистической надежности результатов следует определять средне значение БПК по результатам анализа нескольких одинаковых проб, проведенных в идентичных условиях (однако в разные дни). Для достижения более высокой точности анализа предлагается использовать метод разбавления манометрическим методом. Следует иметь в виду, что эти два метода не всегда дают сравнимые результаты (Montgomery, 1967). При помощи манометрического метода можно получить показания биологической окисляемости менее чем за 5 дней.

7.7 ФИЛЬТРАЦИЯ И СПОСОБЫ КОНСЕРВАЦИИ ПРОБ В ПОЛЕВЫХ УСЛОВИЯХ

7.7.1 Фильтрация

Фильтрация пробы рекомендуется для отделения растворенных веществ от взвешенных частиц. Фильтрация при помощи центрифуги требует большого количества дополнительного оборудования, а фильтрация путем осаждения — большего времени. Оба способа трудно калибруются и могут увеличить вероятность загрязнения пробы. В полевых условиях фильтрацию следует выполнять во время или непосредственно после отбора проб и заканчивать соответствующим процессом консервации.

Общую концентрацию металлов можно определить при помощи параллельного отбора второй,
Глава 7. Качество воды и водные экосистемы

Исследование воды нефильтруемой пробы. В лаборатории эту пробу подвергнут специальной обработке, чтобы преобразовать металлы в соединения, растворимые в воде.

Пробы, взятые для анализа на органические компоненты, фильтруются непосредственно после отбора при помощи стекловолокнистого фильтра или металлической мембраны. Отфильтрованный раствор можно анализировать на растворенные органические компоненты, а фракции на фильтре — на органические частицы.

Серьезная проблема может возникнуть из-за поглощения фильтрующим материалом растворенных веществ.

Для решения этой проблемы существует множество предложений в отношении того, какие материалы лучше использовать, например органические фильтры (поликарбонатные, ацетатно-целлюлозные или сделанные из тefлона) для минеральных веществ, а фильтры из стекловолокна для органических соединений.

Фильтры и фильтрационный прибор требуют предварительной обработки в лаборатории, а перед фильтрацией их следует промывать частью отобранной пробы, объемом около 150–200 мл. Для создания давления в фильтрационном приборе следует использовать ручной или электрический насос. При использовании электронасоса для фильтрации потребуется подключение к электросети или переносному источнику питания. Создание вакуума может привести к изменению величины pH в результате потери двуокиси углерода, а также к осаждению некоторых металлов. По этой причине и для снижения потерь за счет адсорбции на стенках сосуда, пробы на металлы часто окисляют.

7.7.2 Способы консервации

За время между отбором пробы и ее анализом в лаборатории могут произойти физические, химические и биохимические изменения. Во многих случаях это время нужно сократить до минимума или прибегнуть к консервации пробы.

Для некоторых компонентов консервация невозможна, и измерения должны проводиться в полевых условиях. Даже если определяемый элемент довольно стабилен, обычно пробы все равно следует законсервировать. Это выполняется различными способами, например, сохраняя пробы в темном месте, добавляя химические консерванты, снижая температуру для замедления реакций, замораживая пробу, путем приготовления экстрактов с различными растворителями, применения полевую колонковую хроматографию.

7.7.2.1 Емкости для проб

Применение соответствующих емкостей очень важно при консервации для сохранения целостности пробы. Технические характеристики этих емкостей обычно обеспечивают аналитическую лабораторию. Рекомендации по выбору емкости, в зависимости от исследуемого компонента, содержатся во многих публикациях (Clark and Fritz, 1997).

Существуют два основных вида емкостей — пластиковые и стеклянные. Боросиликатное стекло инертно по отношению к большинству материалов и рекомендуется, когда требуется стеклянная емкость, например при отборе проб на органические компоненты. Полиэтиленовые емкости являются довольно дешевыми и гораздо меньше поглощают ионы металлов. Их применяют для проб, которые предстоит проанализировать на неорганические компоненты. Полиэтиленовые емкости нельзя использовать для отбора проб на органику, например на пестициды и некоторые летучие вещества, которые рассеиваются через пластиковые стенки. Для светочувствительных проб нужна светонепроницаемая или непроциаемая для ультрафиолета стеклянная посуда. Для растворенных газов используют бутыли с узким горлом и коническими стеклянными пробками. Емкости для микробиологических проб должны выдерживать стерилизацию в автоклаве или с помощью этилового спирта.

Для отслеживания элементов должен использоваться только низко или высокоплотный полиэтилен (НППЭ и ВППЭ). На сегодняшний день доступны одноразовые емкости. Перед использованием они должны быть обеззаражены. Они должны содержаться, по крайней мере, 24 часа в сверхчистом 10 % растворе HNO₃, потом промыты дистиллированной водой (18,2 Ω) и сохранены в полиэтиленовых пакетах до их использования в поле (Pearce, 1991).

Крышки для бутылей являются потенциальным источником проблем. Стеклянные пробки могут залипать, особенно при щелочных пробах. Прокладки под крышками, сделанные не из тefлона, могут стать источником искусственных загрязнителей или абсорбировать незначительное количество пробы. Чем меньше концентрация определяемого компонента, тем более важными становятся вышеупомянутые проблемы.

7.7.2.2 Добавление химических веществ

Этот способ применяется для большинства растворенных металлов и кислотных гербицидов. Некоторые пробы на биологический анализ также требуют химической консервации.
Как правило, предпочтительней использовать относительно концентрированный раствор консерванта. В этом случае корректировка пробы на разбавление консервантом будет совсем незначительной.

Потенциальные сложности для анализа, которые создает консервант, требуют четкого следования методике. Например, кислота может нарушить распределение взвешенных материалов и вызвать растворение металлов, находящихся в пробе, либо в коллоидной форме, либо в виде твердых частиц. Поэтому очень важно соблюдать следующий порядок — вначале производится фильтрация, а затем — добавление кислоты.

7.7.2.3 Замораживание

Когда анализ невозможен в разумные сроки, рекомендуется замораживание для анализа главных анионов, т. е. хлорида, сульфата и нитратов. Однако его применяют для определенных видов анализа, а не в качестве обычной процедуры консервации, поскольку оно может вызвать физико-химические изменения пробы, например образование осадка и улетучивание растворенных газов, что может повлиять на состав пробы. Кроме того, твердые частицы, находящиеся в пробе, при замораживании и оттаивании изменяются, а необходимым условием для любого анализа может быть возврат в состояние равновесия, за которым следует быстрая гомогенизация. Никогда нельзя замораживать пробы воды в стеклянной посуде.

7.7.2.4 Охлаждение

Охлаждение до 4 °C или до появления льда является обычным способом консервации. В отдельных случаях охлаждение может повлиять на растворимость некоторых веществ и привести к их осаждению. Охлаждение часто используют совместно с добавлением консервантов.

7.7.2.5 Практические аспекты консервации

Важным практическим аспектом консервации является определенный последовательный порядок действий, обеспечивающий гарантии того, что все пробы, требующие консервации, незамедлительно получают необходимую обработку. Это особенно важно при добавлении химического консерванта, поскольку такая добавка может привести к трудноопределяемым изменениям в характере пробы. Целесообразно отмечать все законсервированные пробы, чтобы гарантировать их от повторной обработки.

Безопасность и точность добавления химических консервантов в полевых условиях требует соблюдения специальных мер предосторожности. Заранее откалиброванные и автоматические пипетки обеспечивают в полевых условиях точность добавления консерванта и устраняют опасность случайного проливания кислоты из пипетки. Зачастую бывает удобным добавить консервант в емкость для пробы непосредственно в лаборатории, перед выездом в поле. Другой возможностью является использование цветового кода или визуального осмотра, с заранее измеренным объемом консерванта. Несмотря на то что этот способ является более дорогим, он имеет преимущество из-за простоты полевой процедуры консервации, снижения вероятности ошибки и внесения загрязнителей.

7.8 ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ И КАЧЕСТВО ПОВЕРХНОСТНЫХ ВОД

Дистанционное обнаружение позволяет характеризовать пространственные и временные изменения, получаемые другими методами. Однако оно не очень точно относительно локальных наземных измерений. Кроме того, оно должно сопровождаться спутниковыми данными для интерпретации изображений в отношении качества воды и почвы. Использование дистанционного зондирования для оценки взвешенных наносов обсуждалось ранее в главе 5. В данном разделе представлена более подробная информация о таких вариантах применения, как характеристика растительности, соленость и температура воды.

Спутники могут быть двух типов в зависимости от их источника энергии. Пассивным спутникам требуется солнечный свет, чтобы фиксировать изображения объектов на поверхности Земли. Они обычно работают в видимом или инфракрасном диапазоне электромагнитного спектра и поставляют так называемые «оптические» изображения. Активные спутники имеют собственный источник энергии. Они работают в микроволновом диапазоне электромагнитного спектра и позволяют получать так называемые «радарные» изображения.

Кроме того, спутниковые изображения могут быть разделены в соответствии с четырьмя базовыми критериями:
а) протяженность участка на поверхности Земли, соответствующую размеру пикселя (пространственное разрешение). Изображения бывают с низким пространственным разрешением (1 км или больше, такие как изображения растительности или meteorологические изображения, получаемые со спутников НУОА и СПОТ), со средним разрешением (20 м или больше, такие как изображения
МСС и ТМ со спутника Ландсат или изображения СПОТ 1 – СПОТ 4) или очень высоким (10 м или меньше, такие как СПОТ 5 или IKONOS);
b) диапазон излучения, соответствующий длине волны, при помощи которого были сделаны изображения;
c) частота прохождения спутника;
d) радиометрическая селекция, соответствующая способности детектора улавливать отраженное радиоизлучение.

Выбор спутникового изображения определяется многими факторами. Во-первых, необходимо учитывать размер изучаемой площади. Невозможно изучить болото площадью 20 км² с помощью снимка, сделанного спутником НУОА с низким разрешением. Выбор диапазона также должен соответствовать задачам программы. Например, оптическое изображение рекомендуется для изучения мутности воды. К тому же, требуется выравнивание между временными переменными изучаемого явления и частотой прохождения спутника над изучаемой территорией.

7.8.1 Изучение качества воды в видимом и инфракрасном диапазонах

От видимого диапазона спектра до ближнего инфракрасного радиометрическая реакция чистой воды такая же, как черного тела, абсорбирующего всю радиацию. Это хорошо известное свойство используется для определения присутствия воды по спутниковому снимку.

Различные факторы, такие как соленость воды и мутность, состав почвы или присутствие растительности, изменяют радиометрическую реакцию воды, которая, в свою очередь, может быть использована для характеристики этих факторов.

Лучшая положительная корреляция между радиометрической реакцией и мутностью находится в зеленой зоне (Bonn, 1993). Это может косвенно указывать на соленость. На самом деле, соленость и мутность обычно обратно пропорциональны. Когда соленость поднимается, результатом этого является хлопьевобразование, за которым следует осаждение взвешенных веществ и понижение мутности воды.

Радиометрическая реакция в ближнем инфракрасном диапазоне может быть нарушена взвешенными частицами и неглубоким дном (Chuvieco, 2000). На неглубоких водах абсорбция маленькая и отражение высокое (из-за высокой отражательной способности дна). Однако это сложный эффект, поскольку радиометрическое поведение воды подвержено влиянию химического состава, текстуры, структуры и влажности. Поэтому глинистая почва, например, будет обладать низкой отражательной способностью по сравнению с песчаной. Диапазон отражения воды очень широк между светлыми почвами (песок, известняк и даже гипс), которые сильно отражают солнечную радиацию, и темными (глина, богатая органическими соединениями), которые поглощают почти весь объем радиации (Bonn and Rochon, 1993).

В радиометрическом диапазоне отражательная способность растительности понижается в видимом спектре, но она очень высока в ближнем инфракрасном диапазоне. Что касается растительности, ее слабый отклик на излучение в видимом диапазоне спектра является результатом сильной абсорбции хлорофилла, особенно в красной зоне, в то время как сильный отклик в ближнем инфракрасном диапазоне объясняется внутренней структурой листьев. Таким образом, для того чтобы изучить присутствие растительности в неглубоких водах, рекомендуется использовать оптические изображения (Shutko, 1986, 1990; Gross and others, 1987).

Оценка количества хлорофилла в океане и устьях проводится при помощи разных снимков, особенно изображений, полученных со сканирующего радиометра для получения цветовых изображений прибрежных зон (СРПЗ) и изображений с усовершенствованного радиометра очень высокого разрешения (УРОВР) (WMO, 1993). Такой способ оценки имеет ограничения в случаях, когда концентрация взвешенных веществ достаточно низка для того, чтобы не маскировать отражение, соответствующее отражению уровня хлорофилла (Ritchie and others, 1992). Макрофиты и водная растительность может обычно изучаться по этим базовым принципам (Ackleson and Klemas, 1987).

7.8.2 Изучение качества воды в микроволновой части спектра

В воде микроволновая часть спектра обладает особой проницаемостью. Можно внешнее различить неровную или гладкую поверхности — по ламбертовому или симметричному отражению соответственно. Например, изображение с радара может быть использовано в случае, если неровность поверхности воды обусловлена присутствием волн. Это свойство также используется для определения аномалий поверхностных скорость, таких как выброс нефти. Теоретически и практически доказано, что микроволновая радиометрия может быть использована для изучения солености и общей минерализации воды (Shutko, 1985, 1986, 1987). На самом деле, микроволновое излучение чувствительно к вариациям электропроводности и, следовательно, составу воды.
Дистанционное зондирование в тепловом инфракрасном диапазоне может быть использовано для оценки поверхностной температуры воды (примеры в Engman и Gurney, 1991). Микроволновая радиация менее чувствительна к атмосферным условиям и потому более часто используется, но ее разрешение является приблизительным по сравнению с разрешением в инфракрасном диапазоне (Shutko, 1985, 1986).

Ссылки и дополнительная литература

Shutko, A.M., 1990: Offer on hardware, software and services on survey of soil, vegetation and water areas — from aircraft. Institute of Geoinformatics, Nongovernmental Center for Research and Institute of Radio Engineering and Electronics, Academy of Sciences, Fossil Fuel Institute, Moscow.

УСЛОВИЯ СОБЛЮДЕНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ В ГИДРОМЕТРИИ

8.1 ОБЩАЯ ПРАКТИКА

Система передачи технологии ВМО, известная как Гидрологическая оперативная многоцелевая система (ГОМС), действует с 1981 года и предполагает простой, но эффективный способ широкого распространения испытанных методов для использования их гидрологами. Особое внимание следует обратить на раздел A00 Справочного наставления по ГОМС, который охватывает вопросы политики, планирования и организации. Данная глава посвящена различным аспектам безопасности в гидрометрии. Она дополняет предыдущие разделы, которые предоставляют обзор гидрологических приборов и методов наблюдений, описываю мер безопасности, необходимые для поддержки операционной деятельности гидрологов.

Гидрологические измерения выполняются в широком диапазоне экстремальных условий, и многие из них потенциально опасны для персонала, выполняющего их. Знание этих опасностей и мер, благодаря которым они могут быть сведены к минимуму, необходимо для персонала гидрологических станций. Подробные информативные руководства по технике безопасности были разработаны целым рядом организаций. Всем специалистам в области гидрологии и техническому персоналу рекомендуется ознакомиться с этими материалами.

Каждая страна или государство должны иметь свои стандарты и способы обеспечения безопасности, а также законы и правила, их регулирующие. Кроме того, в некоторых местах может быть необходимо принять особые меры безопасности, которые должны соблюдаться персоналом гидрологических служб. Многие из них описаны в этой главе.

Каждый член полевой бригады несет ответственность перед собой и своими коллегами за максимально возможное соблюдение мер безопасности во время работы. Организации несут ответственность за распространение предупреждений об опасных ситуациях и за разработку мер, направленных на сведение их к минимуму, а также за обеспечение соответствующего уровня безопасности оборудования и за подготовку персонала.

8.2 МЕРЫ БЕЗОПАСНОСТИ НА ГИДРОМЕТРИЧЕСКИХ СТАНЦИЯХ С САМОПИСЦАМИ

8.2.1 Подходы к постам

Хорошо сделанные пешеходные дорожки, лестницы, тропинки и прочее очень важны для безопасности на крутях речных берегах. Они нужны, чтобы обеспечить безопасные подходы, как в заболоченных, так и в сухих местах. Когда начинают строительство станции, прежде всего следует сделать подходы к ней.

8.2.2 Платформы

Высокие платформы и переправы должны иметь несколько поверхность, например проволочную сетку, натянутую над деревянной обшивкой. Следует также устанавливать перила.

8.2.3 Колодцы

Некоторые станции, регистрирующие уровень воды, имеют глубокие колодцы, в которые необходимо иногда спускаться для поддержания их в рабочем состоянии. Существует опасность возможного падения или отравления газом. Все колодцы должны, по крайней мере, иметь страховую веревочную связь или лебедку, установленную таким образом, чтобы поднять человека, упавшего на дно колодца.

Человек, спускающийся в колодцы, глубина которых значительна и которые подозреваются на предмет содержания в них газа, должен надеть привязные ремни, прикрепленные к спасательной системе, и иметь одного или нескольких человек наверху для страховки. Следует также надевать защитную каску.

В колодцах может присутствовать ряд газов, включая углекислый, метан и сернистый. Они образуются в результате разложения органических веществ и могут вытеснять воздух, что ведет к недостатку кислорода, а также к токсичности и воспламенению. Эти опасные явления могут иметь место даже при очень низких концентрациях, а реакция на газ может быть весьма быстрой, так как человек теряет сознание даже после одного или двух вдыханий токсичного газа.

Меры предосторожности включают: надежную вентиляцию во всех колодцах глубиной более 6 метров, открытие крыш колодца для вентиляции перед спуском, применение вытесняющих газ факелов или задымления, применение оборудования по слежению за уровнем газа, а также определенный порядок использования страховочных средств и спасательного
оборудования. Все усилия следует направить на то, чтобы не допустить появления органических веществ в колодце или на удаление их. Опасность соскальзывания может быть снижена благодаря сооружению надежных лестниц, а также благодаря сохранению всего оборудования в хорошем состоянии.

8.3 МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С МОСТОВ

Главной опасностью при выполнении измерений или отборе проб с мостовых переправ является столкновение с проходящим транспортом или падение с моста в результате большой нагрузки или большого веса подвешенного оборудования.

8.3.1 Опасность со стороны транспорта

Достаточную степень безопасности могут обеспечить мосты с пешеходным тротуаром. В остальных случаях необходимо предупреждать водителей с помощью специальных сигналов, и, если это приемлемо с практической точки зрения, использовать специальные фонари. Персонал должен быть одет в флюоресцирующую или яркоокрашенную одежду, можно также установить переносные транспортные знаки, чтобы отвести поток транспорта от зоны работ. Необходимо получить разрешение местных властей на проведение работ, мешающих транспортному потоку. Если в этих районах есть FM радиостанции, важно объявить расписание гидрологических мероприятий для осведомления общественности.

8.3.2 Опасность со стороны подвесного оборудования

Потенциальная подъемная сила, воздействующая на оборудование, например на измерительные рамы, означает, что оно имеет склонность к опрокидыванию с моста, когда подвесное оборудование или его части начнут падать в реку или на проходящие внизу лодки. Особые меры предосторожности против такой опасности следует принимать во время паводков.

Измерительные краны или рамы необходимо хорошо уравновесить или прикрепить. Должен вычисляться опрокидывающий момент моторизованных кранов, а установленные специальные крепления присоединяются к оборудованию, чтобы при необходимости предотвратить опрокидывание. При работе на судоходных водных объектах все имеющиеся трося и кабели должны отмечаться специальными маркировочными флажками.

8.4 МЕРЫ БЕЗОПАСНОСТИ ВО ВРЕМЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ ВБРОД

8.4.1 Общие положения

В тех случаях, когда возможно пересечь реку вброд, гидрологические измерения могут проводиться более просто и непосредственно, чем в других случаях. Однако возникает определенная опасность при слишком большой глубине и/или скорости потока. Сотрудники не обязаны переходить реку вброд в ситуациях, когда они не чувствуют себя в безопасности. Опыт и смелость являются важными факторами, но всегда следует соблюдать осторожность.

8.4.2 Оценка ситуации

Для того чтобы принять решение в конкретной ситуации о возможности проведения измерений вброд, персоналу необходимо соблюдать меры предосторожности и иметь определенный опыт. В качестве основного руководящего правила принимают следующее: если произведение глубины в метрах на скорость в м·с⁻¹ превышает 1,0, то поток небезопасен для измерений вброд. Форма человека и его одежда также влияют на выбор способа измерений. Специальные болотные сапоги имеют большее сопротивление, чем гольфы или гидрокостюм.

8.4.3 Применение спасательных жилетов

Правильно пригнанные спасательные жилеты соответствующего размера и конструкции обычно следует надевать при резких колебаниях течения и уровня воды, когда существует вероятность таких явлений или когда условия могут стать опасными по другим причинам.

8.4.4 Меры безопасности при использовании каната или размеченного трося

При выполнении измерений расхода для поддержки полезно использовать канат или трос, натянутый поперек реки. Он также может служить в качестве разметки для измерения по нему расстояния. Его следует надежно закрепить с обеих сторон для того, чтобы он выдерживал вес человека и давление течения реки.

8.4.5 Методика перехода вброд

Следует выбирать места с проходимой глубиной, скоростью течения и русловым материалом, планировать передвижение по диагонали вниз по течению
и продвигаться в сторону противоположного берега мелкими шагами, при этом лицо должно быть обращено к противоположному берегу и вперед по течению. Для промеров глубин и поддержки полезно использовать гидрометрическую штангу (без вертушки). Желательно иметь опору, которая находится выше по течению, не терять самообладания и не спешить. Если переход становится слишком трудным, следует вернуться, отступая назад до тех пор, пока не будет возможности повернуться и поиска более легкий путь.

8.4.6 Поведение в случае падения
Если вас начинает сносить течением, нужно двигаться по течению и держать направление к берегу, работая руками и отталкиваясь ногами. Если дно каменистое, следует избегать естественной реакции и не пытаться опереться о дно ногами, поскольку они могут застрять между камнями. Если же это произойдет, течение легко может затащить человека под воду, что может привести к фатальному исходу.

Болотные сапоги нужно сбросить на глубине, когда возникает необходимость проплыть некоторое расстояние. Лучший способ для этого — свернуть их до бедер и сдернуть их поочередно с каждой ноги. Следует избегать выворачивания их наизнанку даже там, где мелко и они мешают. Ремни на сапогах должны быть застегнуты таким образом, чтобы их можно было легко расстегнуть.

Если возможно, постараться удержать в сапогах воздух, повысив тем самым плавучесть, либо надев туго затянутый вокруг талии ремень, либо быстро принять позицию для плавания на спине с поджатыми коленями.

8.5 МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С ЛОДКАМ

8.5.1 Общие положения
Для гидрологических целей используется много различных типов лодок, и к каждой предъявляются свои требования по безопасности. Они всегда должны соблюдаться, так как любое плавание на лодке связано с опасностью. Моторист должен быть ознакомлен со всеми операциями и действиями в непредвиденных ситуациях, а также с правилами управления лодкой при предстоящих работах. Это может включать в себя тестирование огней лодки, наблюдение за погодой и экипировка лодки одеждой, подходящей для разных погодных условий, радио и записками на случай аварийной ситуации. Алкоголь, наркотики никогда не должны употребляться в ходе проведения операций на лодках. Судно должно быть исправно, отвечать требованиям экстремальных условий и не должно быть перегружено.

8.5.2 Спасательные жилеты и средства безопасности
Во время работы на маломерных судах всегда надеваются спасательные жилеты; на крупных — они должны всегда иметься на борту в достаточном количестве для пассажиров и членов экипажа.

На всех лодках необходимо иметь полный комплект средств безопасности, соответствующий типу лодки и возможным экстремальным условиям. Этот комплект включает либо все, либо часть из перечисленного: спасательные жилеты, световые ракеты, спасательные пояса, черпаки, откидывающие насосы, ремни безопасности и наборы для выживания в экстремальных условиях. При любой практической возможности следует устанавливать соответствующее оборудование — радиосвязи. На каждой лодке должен иметься прикрепленный к носу канат для швартовки и буксировки, а также соответствующий якорь с канатом, длина которого должна быть достаточной для исследуемых глубин. На борту должен иметься запасной двигатель и запасное топливо, если это практически осуществимо.

8.5.3 Применение канатов
Измерительные ленты и канаты часто используются для измерения ширины реки. Они должны быть соответствующей длины и быть изготовлены из материала, который не растягивается и способен выдержать навешенные фляжки. Однако чем канат легче, тем меньше усилие необходимо для его установки и тем легче и безопаснее работать с ним.

Канаты другого типа используются для причаливания лодки в точке измерения, и в этом случае действуют те же факторы. В зависимости от скорости течения значение этих факторов возрастает. На судоходных водных объектах все канаты должны быть размещены ярко окрашенными метками через такие интервалы, чтобы канат был хорошо виден. Нельзя доверять только яркому цвету, поскольку многие из людей не различают цветов. Когда возможно, лодки, работающие с такими канатами, следует снабжать яркими сигнальными огнями. Местные власти и все службы, работающие на реке, должны быть предупреждены об опасности.

Такие канаты нельзя оставлять незакрепленными, а персонал, работающий на створе, должен иметь
специальный режущий инструмент для того, чтобы при необходимости предотвратить несчастный случай.

8.5.4 Использование шлюпок
На реках следует грести поперек, по диагонали вверх по реке, против течения, используя способ паромной переправы. В этом случае гребец обращен лицом вниз по реке, и поэтому рулевое управление вблизи препятствий можно отпускать.

Персонал должен уметь грести, весла должны быть достаточной длины (приблизительно половины ширины расстояния между уключинами), а уключины должны быть надежными, закрытого типа. Относительно безопасности, за счет конструктивной плавучести, шлюпки с заполненными воздухом емкостями.

В случае переворачивания их можно привести в нормальное положение при помощи веревки, прикрепленной к одной из уключин; для этого необходимо, находясь с противоположной стороны, потянуть за веревку и перевернуть лодку обратно. Алюминиевые лодки являются легкими, прочными и легко управляемыми. Небольшой вес делает их зависимыми от ветра, и их нельзя использовать в ветреную погоду.

Канаты и трося должны быть установлены на речном и воздушном транспорте (особенно вертолетном) в соответствии с правилами безопасности. Когда необходимо, их следует размещать долговременно и хорошо различимыми отметками, чтобы они были видны операторам и пилотам, работающим на водном объекте.

8.7 МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С РУЧНЫМ ОБОРУДОВАНИЕМ

8.7.1 Топографическая съемка
Наземные электрические провода представляют опасность при использовании для топографической съемки штативов, особенно металлических. Штативы должны иметь знаки, расположенные с обратной стороны на уровне глаз, предупреждающие об их опасности.

8.7.2 Цепные пилы
Работающие должны быть одеты в подходящую, хорошо прилегающую одежду и иметь для безопасности каску, защиту для глаз и ушей, устойчивую обувь со стальными носками.

Запускать пилу следует не отрывая ее от земли, и резку производить в устойчивом положении, когда близость нет препятствий и других людей, и имеется безопасный отход от падающего дерева и веток. Может произойти отдача, если цепь отскочит вверх, натолкнувшись на препятствие. Она может отскочить гораздо быстрее реакции человека, который в этом случае может ее отпустить. Обычно в такой ситуации включит левую руку. Для того чтобы уменьшить вероятность таких случаев, работник должен удерживать рукоятку прямым запястьем, плотно упираясь ногами
Глава 8. УСЛОВИЯ СОБЛЮДЕНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ В ГИДРОМЕТРИИ

8.7.3 Электрооборудование

Все электрооборудование, используемое на открытном воздухе или во влажных условиях, должно быть защищено от изолированного трансформатора или заземленного электрораспределителя. Все электрические провода должны быть натянуты таким образом, чтобы предотвратить их повреждение и контакт с водой. Провода должны содержаться в полной исправности, и любые повреждения необходимо немедленно устранить.

Электроэнергия нельзя перегружать, и ее ремонт должен выполняться только квалифицированными специалистами-электриками.

8.7.4 Электроинструменты

Электроинструменты должны использоваться только по своему назначению и всегда в соответствии с инструкцией изготовителя. Персонал должен быть правильно проинструктирован по всем вопросам их использования. Использование некоторых видов пневмо- и электроинструментов может потребовать разрешения государственных организаций. Защитные очки должны всегда использоваться при работе с режущим, шлифовальным, дробильным и сверлильным оборудованием.

8.7.5 Защитная одежда и средства защиты

Персонал должен быть снабжен всеми средствами защиты в зависимости от условий работы и используемого оборудования.

8.7.6 Радиоактивное оборудование

Некоторые приборы, такие как измеритель влажности почвы и геофизические приборы, имеют встроенные радиоактивные источники. Эти приборы должны быть соответствующим образом промаркированы, а работать с ними и хранить их необходимо в соответствии с правилами пользования. Радиация, излучаемая источником, может быть опасной для здоровья. Обычно радиоактивный материал запечатан в капсулу из нержавеющей стали. Являясь частью оборудования, капсула, как правило, окруженная поглощающим радиацию материалом, таким как пластик, сталь или свинец. Когда прибор выключен, необходимо удостовериться, что источник находится внутри этого поглощающего материала. Ни при каких обстоятельствах нельзя касаться капсулы руками, а в случае необходимости использовать щипцы с длинными ручками или подобное оборудование.

Сохранение хорошей дистанции обычно является достаточной мерой для надежной защиты. Некоторые источники имеют значительное излучение только на расстоянии ближе 10 см, а другие на гораздо большем. Необходимо, чтобы персонал знал тип и другие особенности используемого источника, и чтобы он был ознакомлен с рекомендуемыми процедурами и инструкцией для этого источника. Когда возможно, работодатели должны предоставлять защитную одежду персоналу, работающему с радиоактивными устройствами.

Все инструкции, процедуры и правила должны ужесточенно соблюдаться, а с оборудованием всегда следует обращаться крайне аккуратно.

8.7.7 Вопросы безопасности при наблюдении за подземными водами

Во всех случаях должны быть получены разрешения от владельцев насосов. Насосы и помпы для отбора проб, тестирования или исследования скважин следует использовать в соответствии с мерами безопасности, предусмотренными для этого типа оборудования. Важно соблюдать меры безопасности около бурового оборудования, а также принимать во внимание наставление по буровой практике.

Следует избегать спуска в колодцы большого диаметра для отбора проб из-за возможного присутствия газов, как описано в разделе 8.2.3. При работе наверху колодцев большого диаметра следует надеваю ремни безопасности.

8.7.8 Угроза пыли

Пыль является результатом недостаточной спаянности частиц грунта во время засушливого периода. Пыль может вызывать чрезмерное изнашивание оборудования, особенно на тарировочных метках измерительных приборов. Персонал должен быть уверен, что пыль полностью очищена с коробок для инструментов, перед тем как складывать их обратно перед использованием.

8.8 МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С ХИМИКАЛИЯМИ

Все химикаты, подобные тем, что используются для консервации проб воды, чистящие жидкости и трасеры,
требуют тщательного хранения и осторожного обращения. Необходимо избегать вдыхания паров или непосредственного контакта химических веществ с кожей, глазами и одеждой. Любая пролитая жидкость должна немедленно удаляться путем разбавления большим количеством воды, нейтрализацией или протиркой с последующим удалением использованного для этого материала. Для этих целей необходимо иметь в наличии перчатки, фартуки и пригодные для чистки материалы.

Не следует продувать трубки ртом, за исключением случаев, когда питьевая вода содержит только обычные вещества. При попадании на кожу кислоты, щелочи и других едких веществ ее нужно немедленно промыть обильным количеством воды. Когда есть возможность, можно использовать нейтрализующие растворы, после которых необходимо вторично промыть пораженное место мылом. При попадании на глаза кислоты, щелочи и других едких веществ их следует немедленно промыть большим количеством воды. Кроме того, необходимо промыть места вокруг глаз. Во время промывки нужно держать веки открытыми. Глаза необходимо промывать в течение нескольких минут. При всех повреждениях глаз следует обращаться к специалистам.

Необходимо предпринимать меры предосторожности, так как вода может содержать разнообразные ядовитые и бактериально опасные вещества. Они могут быть извлечены из широкого круга источников, таких как сточные воды или сбросы очищенных стоков, насыщенные растворы из заполненных земных пустот, утечки из емкостей для хранения, промывки емкостей для сельскохозяйственного опрыскивания, а также разливы химических и нефтяных продуктов.

Следует считать подозрительными любые нехарактерные проявления цвета, пленок, образований, пены, запахов или паров, предпринимая в этом случае соответствующие меры предосторожности. Многие токсичные вещества могут проникать через кожу, а в случае паров — через легкие.

Они могут вызвать раздражение глаз, раздражение кожи, зуд, сыпь, тошноту, боль животе, ухудшение аппетита, головную боль, слабость, кашель, одышку и осложнение дыхания.

Меры предосторожности включают использование перчаток, водонепроницаемой спецодежды и фартуков, головных уборов и защиты для глаз. При имеющейся возможности присутствия ядовитых паров работать следует только в хорошо вентилируемых помещениях или с использованием автономной аппаратуры искусственного дыхания. Пищевые продукты следует хранить отдельно от проб и зон их обработки. Необходимо всегда тщательно мыть руки перед принятием пищи. Запрещается курить во время обработки проб или находясь рядом с ними. Когда имеется подозрение на присутствие горючей смеси, источники света и тепла следует держать на расстоянии и хранить пробы в специальных взрывобезопасных холодильниках.

При измерении или отборе проб воды с высокой концентрацией ядовитых веществ, например насыщенные растворы из заполненных земных пустот или при подозрении на радиоактивность, требуются специальные условия и консультация соответствующих специалистов.

8.9

СПЕЦИАЛЬНЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ В УСЛОВИЯХ ХОЛОДА

8.9.1 Гипотермия (переохлаждение)

Гипотермия — это понижение температуры тела в результате переохлаждения, что приводит к упадку жизненных и физических сил. В основе гипотермии лежит низкая температура, усугубляемая мокрой одеждой, ветром, состоянием голода и истощением. Она часто случается в условиях, когда ее ранние симптомы нельзя распознать.

Ранние симптомы гипотермии могут включать следующие признаки: усталость, холод и истощение, отсутствие интереса, летаргия, неловкость и неуверенность в движениях, несвязность речи и нелогическое поведение. Наличие этих признаков требует немедленного медицинского вмешательства, а также немедленных действий по защите от дальнейшей потери тепла и разогреванию. Пострадавший не может позвать на помощь, а также может отрицать, что существует какая-либо проблема. Более поздние симптомы, которые указывают на серьезную необходимость принятия срочных мер, проявляются в явном недомогании, прекращении дрожи, несмотря на холод, коллапсе и бессознательном состоянии.

Когда симптомы становятся очевидными, следует немедленно начать разогревание. Тело пострадавшего, по всей вероятности, не будет способно генерировать достаточно тепла для этого, поэтому тепло следует прикладывать постепенно к телу, а не к конечностям. Нагревание конечностей увеличит прилив крови к этим наиболее охлажденным частям тела и еще больше понизит температуру самого тела.

При разогревании необходимо обеспечить укрытие, сухую одежду, тепловую изоляцию (например, спальный мешок), а также тепло, прикладываемое к
глава 8. УСЛОВИЯ СОБЛЮДЕНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ В ГИДРОМЕТРИИ

существенно важным органом тела. Этого можно достичь путем тесного contacta с компанионом в спальном мешке. Тело не следует растирать; также не следует непосредственно прикладывать к тelu источники тепла. Помогает также теплое сладкое питье (но не алкоголь), но только не для людей в бессознательном состоянии.

Благодаря прогреванию и укрыванию больной в основном быстро приходит в себя, но возвращение в холодные условия может вызвать коллапс. Полное выздоровление может потребовать до двух дней.

Гипотермию можно предотвратить, используя соответствующее укрытие и тепло- и ветрозащитную одежду. Следует избегать длительного пребывания в сырости и иметь запас пищи и укрытие, например тент или палатку. Работодатели и подрядчики также могут предоставлять теплые убежища на месте работы, где работники могут укрыться от холода и пить теплые напитки. Теплые сладкие напитки и супы лучше, чем кофе, поскольку кофе увеличивает потерю тепла телом.

Если работа подразумевает поездки на открытом пространстве передвижения или некую деятельность, в ходе которой генерируется ветер, количество остановок должно быть увеличиваться надлежащим образом.

8.9.2 Обморожение

Переохлаждение при сильном морозе вызывает обморожение незащищенных частей тела, например: пальцев на ногах и руках, ушей и носа. Пораженные участки тела немеют, приобретают белый цвет и восковой вид. Легкое поверхностное обморожение может быть снято прикладыванием руки или другой части тела, без растирания. Нельзя разогреваться, используя прямое нагревание или растирание, нельзя также давать спирт. Более серьезные случаи обморожения требуют медицинского вмешательства.

Меры предосторожности заключаются в ношении соответствующей обуви, защите рук, лица и ушей, а также в том чтобы избегать ношения тесной одежды и обуви, сохранять руки и ноги сухими и постоянно контролировать признаки онемения. Постоянное движение или сгибание пальцев рук и ног для стимуляции кровообращения является кратковременным средством, которое следует использовать, чтобы уменьшить переохлаждение.

8.9.3 Работа на льду рек и озер

Поездки и работа на льду должны выполняться с особой осторожностью и с сохранением минимальной нагрузки. В случае когда лед провалился, необходимо положить руки на твердую поверхность льда, подтянуть тело, отползти вперед на животе в тех пор, пока бедра не окажутся на льду, а затем быстро перекатиться на лед. Продолжать перекатываться до безопасного места. Если лед очень тонкий и не выдерживает вас, используйте способ подпорок, ломая лед одной рукой и одновременно поддерживаю себя с помощью другой.

Спасатели должны попробовать добраться до пострадавшего при помощи шеста, лодки или веревки. Выходить на кромку льда следует только в крайних случаях. Если это необходимо, держите длинный шест или скользите по льду в положении лежа. При наличии веревки, для безопасности, закрепите ее на какой-нибудь опоре. Необходимо как можно быстрее высыпать и обогреть человека, который провалился под лед, для предотвращения гипотермии.

К значительному риску могут привести и измерения подо льдом. Просверливание лунок или вырубка мажут существенно уменьшить толщину льда. По всей вероятности, лед на реках имеет переменную толщину, и ее нельзя оценивать по толщине льда у берегов. Зоны с порогами или большой турбулентностью, например у опор моста, скорее всего имеют более тонкий лед за счет движения воды. При передвижении по реке, покрытой льдом, желательно проверять лед ледорубом через каждые несколько шагов. Твердый лед издает звонкий звук, а мягкий — глухой. При любых сомнениях относительно толщины льда следует использовать спасательную веревку и иметь партнера на берегу со спасательным оборудованием.

8.9.4 Работа в горных районах

Погода в горных районах очень изменчива и создает проблемы при несоблюдении осторожности или плохом оснащении. Чем холоднее климат, тем больше проблем и требуется больше одежды, запасов пищи и средств, обеспечивающих безопасность.

Персонал должен быть опытным или находиться вместе с теми, кто имеет такой опыт, планы маршрутов должны быть известны соответствующим специалистам, которые в случае необходимости могли бы оказать первую помощь. Следует иметь специальную водонепроницаемую, ветрозащитную и теплую одежду, а также достаточный запас продуктов и спасательное снаряжение для экстремальных условий. При работе с вертолетом необходимо, чтобы каждый член отряда имел такое снаряжение даже тогда, когда он отлучается на очень короткое время, так как облачность или другие погодные условия могут помешать его возвращению.

Нельзя рисковать и ступать на твердый снег без ледоруба, страховой веревки, шипов, кроме того,
следует знать, как ими пользоваться. Важно соблюдать осторожность на случай лавины, особенно сразу после выпадения осадков, знать различные признаки нестабильных снежных условий, а также стараться учесть советы более опытных товарищей. Независимо от снежных условий следует избегать передвижения или спуска по крутым склонам. При попадании в лавину следует принять все усилия, чтобы остаться наверху и избежать быть засыпанным снегом, закрыть нос и рот, чтобы предотвратить удушье, и если вас засыпали, попробуйте создать воздушное пространство перед лицом и грудной клеткой.

8.9.5 **Выживание в холодной воде**

Гипотермия очень быстро наступает при попадании в холодную воду. Ее наступление может быть замедлено при соблюдении спокойствия и наличии одежды, уменьшающего приток воды к телу, который приводит к потере тепла. Поскольку потеря тепла в воде при одинаковой температуре идет намного быстрее, чем на воздухе, можно сохранить тепло, если постараться, насколько это возможно, вынырнуть из воды.

Желательно, чтобы уменьшить потерю тепла, держать голову над водой, и свести ноги вместе в области паха. Незаменными в таких ситуациях является спасательный жилет, который также обеспечивает защиту внутренних органов. Группе людей следует держаться вместе, прижавшись друг к другу, чтобы уменьшить потерю тепла. Дети должны находиться в центре такой группы.

Лечение заключается в прогревании в первую очередь жизненных органов до разогрева конечностей, как описано в разделе 8.9.1.

8.10 **СПЕЦИАЛЬНЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ В ЖАРКИХ УСЛОВИЯХ**

8.10.1 **Тепловой удар** (гипертермия)

Тепловой удар происходит при высокой окружающей температуре, что приводит к повышению температуры тела до 40 °C и даже выше. Неблагоприятная реакция людей на жару не у всех одинакова и зависит от их способности акклиматизироваться, тренированности и, что самое важное, от гидратации организма. Вначале при чрезмерном нагревании тело отдаёт тепло главным образом в результате испарения воды через потоотделение и дыхание. Если выделение воды прекращается, механизм охлаждения термостатируется и происходит перегрев. Его симптомы заключаются в головной боли, ознобе, тошноте, частом пульсе, мышечной боли, потере координации и, что более опасно, в состоянии бреда и конвульсиях. Если не предпринять необходимых мер, неизбежен летальный исход.

Лечение состоит в незамедлительном охлаждении, для этого переносит пострадавшего в тень, снимают одежду, обрызгивают холодной водой, энергично обмывают при этом. Жертвы дают жидкость только когда она полностью в сознании.

Меры предосторожности заключаются в том, чтобы поддерживать физическое здоровье: умеренный режим, регулярно и часто пить воду небольшими порциями, отказаться от алкогольных напитков и кофе, а также избегать работы в самые жаркие часы, носить легкую одежду светлых тонов и свободного покроя и шляпы с полями и, кроме того, добавлять соль в пищу. В случае если условия работы слишком жаркие, работодатели могут также принять следующие меры:

a) технические меры включают использование изоляции, переоборудование или замену источников тепла в зонах работы, установку кондиционера для охлаждения всего рабочего пространства, технология для особенного жарких областей и рабочих мест, местную вытяжную вентиляцию для отвода тепла от рабочего места, автоматизации жарких процессов, и обеспечение технического обслуживания, позволяющего быстро устранить источник жары (например такой, как утечка пара);

b) фены могут увеличить потоки воздуха и уменьшить влажность. Увеличение потока воздуха увеличивает эффективность потоотделения. Однако если температура воздуха равна или выше температуры тела, фены просто подвергнут тело большему количеству жаркого воздуха. Это увеличивает тепловую нагрузку и риск проблем, связанных с тепловым напряжением;

c) административные и другие меры для возникающих в это время от времени кардиальных условий при работе на улице и в помещениях включают в себя предоставление регулярных перерывов на отдых, обеспечение достаточного количества питьевой воды, надлежащее соление пищи, тренировку работников с целью распознавать и решать проблемы, связанные с перегревом, перемещение беременных женщин с жарких рабочих мест, перенос времени работы на более прохладное время суток и предоставление гимнастике для восстановления.

ПРИМЕЧАНИЕ. Работники должны регулярно пить небольшие количества воды или другие прохладительные (но не холодные) напитки. Одна чашка жидкости каждые 15–20 минут может заменить воду, потерянную при потении. Если работники пьют только тогда, когда они испытывают жажду, то они могут не получить достаточное количество жидкости.
8.10.2 Обгорание на солнце

Излишнее нахождение на солнце может привести к серьезному обгоранию, особенно у людей со светлой кожей. Оно вызывает сильную боль и повреждение кожного покрова и может привести к тепловому удару. Длительное нахождение под воздействием солнечных ультрафиолетовых лучей может вызывать рак кожи, особенно у людей со светлым цветом кожи.

Меры предосторожности заключаются в ношении защитной одежды и, особенно, головного убора. Следует наносить на кожу солнцезащитный крем. Необходимо ограничить время ежедневного нахождения на солнце, постепенно увеличивая его, чтобы выработать у организма защитный рефлекс.

8.11 ПЕРЕДВИЖЕНИЕ И ТРАНСПОРТ

8.11.1 Общие положения

Существует очень много видов передвижения и типов транспортных средств, которые применяются при гидрологических работах и которые различаются в соответствии с типом местности, климатом и маршрутами передвижения. Вопросы безопасности, которые учитывают все разнообразие этих факторов, включают широкий круг проблем и не ограничиваются только гидрологическими работами. В этой связи они лишь кратко затрагиваются в настоящем Руководстве; гидрологам настоятельно рекомендуется обратиться к наставлениям и рекомендациям для местных условий и типов транспортных средств.

8.11.2 Вертолеты

С вертолетами на земле обычно связан шум и сильный ветер, заслоняющие опасность, которую представляют их основной и хвостовой винты. Они приближаются к вертолету или удаляются от него без разрешения пилота и вне их видимости. Подходить и уходить от воздушного судна следует, пригнувшись и находясь на максимальном расстоянии от основного винта; обходить вокруг хвоста запрещается.

Персонал должен находиться вдали от посадочной площадки и не оставлять на ней оборудование. Все снаряжение и незакрепленные предметы следует полностью убрать из зоны воздушной волны вертолета или сильно прижать к земле. Длинномерные предметы, например геодезические рейки, следует подносить горизонтально на уровне талии, чтобы избежать столкновения с винтами. Воздушное судно должно загружаться под наблюдением пилота, внимание которого следует обратить на опасные грузы, например аккумуляторные батареи или горючие материалы.

Линии электропередач и канатные дороги представляют особую опасность для вертолета, и персонал должен поделиться своими знаниями с пилотом об их местонахождении, а также помочь в обнаружении других подобных опасностей.

8.11.3 Моторизованный транспорт

Для проведения многих гидрологических работ часто необходимо передвижение на моторизованном транспорте, который потенциально представляет серьезную опасность. Весьма распространены дальние поездки по внутренним дорогам, которые создают дополнительную опасность на шоссе.

Самой распространенной причиной аварий является превышение скорости. Это также относится и к внутренним дорогам, которые часто узки и извилисты и имеют плохое покрытие. Хорошие водители управ- ляют с плавным ускорением, большой осторожностью и тормозят спокойно, они внимательны к транспорту, пассажирам и к другим участникам дорожного движения.

Содержание транспорта в хорошем состоянии помогает сохранять контроль над средством передвижения в плохих для вождения условиях. В таблице I.8.1 приведен список мероприятий для технического поддержания транспорта.

8.12 НАБОР ДЛЯ ВЫЖИВАНИЯ И НЕПРИКОСНОВЕННЫЙ ЗАПАС

Весь персонал в удаленных районах должен иметь набор для выживания в экстремальных условиях. Состав этого набора может сильно отличаться в зависимости от климата, условий и вида передвижений, но в него всегда должны входить консервированные продукты крайней необходимости, вода, таблетки для очистки воды или йод, оборудование для приготовления пищи и обогрева, мобильное укрытие, например тент или палатка, спальные мешки, фонари, медикаменты, специальная одежда на случай ухудшения погодных условий, туалетные принадлежности и сигнальные средства, такие, как зеркало, световые ракеты, портативные переговорные устройства, мобильное телефон и другие виды двусторонней радиосвязи. Перечень предметов примерного индивидуального набора предоставлен в Таблице I.8.2.
Внешняя проверка осуществляется каждый раз, когда транспортное средство приводится в движение, с целью убедиться в том, что:

Давление в шинах в норме, протекторы не стерлись, дворники работают, в баке есть стеклоочистительная жидкость, под транспортным средством нет следов утечки. Указатели поворота, фары, задние фонари и фонари тормоза исправны и не загрязнены.

Внутренняя проверка осуществляется каждый раз, когда транспортное средство приводится в движение, с целью убедиться в том, что:

Все двери полностью закрываются и запираются; сиденья и подголовники удобно отрегулированы, водитель и пассажиры пристегнуты ремнями безопасности, приборы работают и точно отражают состояние двигателя, водитель психически и физически готов к управлению транспортным средством, зеркала, вентили и стекла отрегулированы должным образом.

Ежедневная проверка

Достаточный уровень топлива до запуска двигателя. Уровень стеклоочистительной жидкости является достаточным.

Ежемесячная проверка

Уровень автоматической трансмиссии и уровень тормозной жидкости являются достаточными.

Проверка раз в полгода

Щетка стеклоочистителя, шины и уровень жидкости гидроусилителя руля в норме.

Весь персонал, работающий в поле, должен пройти курс подготовки по оказанию первой помощи. Каждого работника следует снабдить соответствующим набором и руководством по его использованию. На занятиях должны рассматриваться следующие вопросы: искусственное дыхание, массаж сердца и легких, приведение в сознание, остановка кровотечения, оказание помощи при переломах, состоянии шока, повреждении глаз, отравлении и ожогах.

Персонал должен проверять свою подготовку к экстремальным ситуациям как минимум раз в 6 месяцев. Это позволит им дополнить и обновить свои наборы средств для выживания.

8.13 ДРУГИЕ ВИДЫ ОПАСНОСТИ

Полевой персонал должен знать и соблюдать осторожность в отношении других видов опасностей, встречающихся при их работе. К ним относятся ядовитые растения, ядовитые и жалюзующие насекомые, опасные животные, зыбучие пески, грозы и др. Кроме этого, значительный ущерб здоровью может нанести купание или потребление воды из неизвестных источников. В некоторых районах существует вероятность неосознанно не подвергаться таким рискам. Работодатели обязаны сделать так, чтобы их сотрудники никогда неосознанно не подвергались таким рискам.

В случае удаленных полевых дистанционных работ персонал должен передвигаться в сопровождении хотя бы одного местного жителя, которому известны дороги, люди и ситуация в отношении безопасности. Должны быть предприняты усилия для

Таблица I.8.1. Контрольный лист технического обслуживания транспортных средств

<table>
<thead>
<tr>
<th>Проверка</th>
<th>Содержание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Внешняя проверка</td>
<td>Давление в шинах в норме, протекторы не стерлись, дворники работают, в баке есть стеклоочистительная жидкость, под транспортным средством нет следов утечки. Указатели поворота, фары, задние фонари и фонари тормоза исправны и не загрязнены.</td>
</tr>
<tr>
<td>Внутренняя проверка</td>
<td>Все двери полностью закрываются и запираются; сиденья и подголовники удобно отрегулированы, водитель и пассажиры пристегнуты ремнями безопасности, приборы работают и точно отражают состояние двигателя, водитель психически и физически готов к управлению транспортным средством, зеркала, вентили и стекла отрегулированы должным образом.</td>
</tr>
<tr>
<td>Ежедневная проверка</td>
<td>Достаточный уровень топлива до запуска двигателя. Уровень стеклоочистительной жидкости является достаточным.</td>
</tr>
<tr>
<td>Ежемесячная проверка</td>
<td>Уровень автоматической трансмиссии и уровень тормозной жидкости являются достаточными.</td>
</tr>
<tr>
<td>Проверка раз в полгода</td>
<td>Щетка стеклоочистителя, шины и уровень жидкости гидроусилителя руля в норме.</td>
</tr>
</tbody>
</table>

Таблица I.8.2. Перечень средств индивидуальной защиты

<table>
<thead>
<tr>
<th>Тип</th>
<th>Средство</th>
</tr>
</thead>
<tbody>
<tr>
<td>Химическая защита и защита от заболеваний</td>
<td>Защитные фартуки Щит против брызг для глаз и лица Перчатки (винил и/или латекс), размеры S, M, L и XL Защитные костюмы, размеры S, M, L и XL Респираторы (для использования необходима сертификация)</td>
</tr>
<tr>
<td>Климатическая и ультрафиолетовая защита</td>
<td>Ботинки Жидкости (например, вода и спортивные напитки) Шляпа с широкими полями Средство от насекомых (без запаха) Одежда, защищающая от дождя Солнцезащитные очки Солнцезащитные средства Термоодежда</td>
</tr>
<tr>
<td>Защита на воде (плавучесть и светоотражающие элементы)</td>
<td>Оранжевые надувные спасательные жилеты Ремни безопасности</td>
</tr>
<tr>
<td>Защита во время работы с тяжелыми предметами и машинным оборудованием</td>
<td>Страховочный пояс Каска Средства защиты органов слуха Защитные очки Обувь со стальными носками Рабочие перчатки</td>
</tr>
</tbody>
</table>

информирования местных властей о работах, которые будут производиться в этой области. Это увеличит участие и содействие общественности.

Ссылки и дополнительная литература

9.1 ОБЩИЕ ПОЛОЖЕНИЯ

Программы в области обеспечения гарантий качества, например входящие в серию ИСО 9000 (см. ISO, 2000), были приняты многими агентствами. Они предлагают внедрение практик, целью которых является стандартизация и формализация ряда процедур, начиная со сбора данных и их обработки и заканчивая проверкой качества больших объемов данных. Контроль качества обычно заключается в обучении персонала, ответственного за сбор и обработку данных, использовании лучших методов получения и обработки данных, записи ошибок и технических сбоев, применении процедур проверки и корректировки, а также независимом аудите всей этой цепочки. Данная глава посвящена такому аспекту контроля качества, как процедуре проверки и тестирования гидрологических данных; более общие вопросы контроля качества здесь не рассматриваются.

Гидрологические данные, полученные тем или иным способом и записанные на бумаге, перфоленте или электронных носителях, затем конвертируют в форму, удобную для архивирования и использования. Кроме того, на многих стадиях данные подвергаются ряду проверок для определения их точности и корректности. Поскольку компьютерное архивирование стало стандартной практикой в большинстве стран, обработка данных включает их конвертирование в нужный формат на раннем этапе.

Данные собираются и записываются многими способами: от считывания наблюдателем с простых датчиков до разнообразных автоматизированных средств сбора, передачи и систем учета. С быстрым развитием технологий как никогда важно, чтобы обработка данных и система контроля их качества были хорошо организованы и усвоены людьми, участвующими в сборе и использовании данных.

В качестве примера на рисунке I.9.1 на графике отображена относительно простая система манипуляций с данными.

Отметим, что обеспечению гарантии качества способствует принятие лучших методов и достижений в проверке данных. Гидрологическим службам рекомендуется (при наличии необходимых ресурсов) рассмотреть возможность принятия программы управления качеством в виде, описанном в ИСО 9001. Как только это будет сделано, организация целеобразно нанять агентство с аккредитованной сертификацией для проведения независимой проверки и консультаций по разработке такой программы (Hudson and others, 1999).

9.2 ПРИНЦИПЫ, СОГЛАШЕНИЯ И СТАНДАРТЫ

Как научные дисциплины, гидрология и климатология следуют «правилам» хорошей науки, которые заключаются в том, что сбор данных и их использование должны всегда осуществляться в соответствии признанными надлежащими практиками и научно обосновываться путем экспертной оценки. Эти принципы требуют консервативного подхода к изменению данных, предположениям и принятию гипотез о природных процессах, которые, возможно, кто-то понимает в меньшей степени, чем можно предположить.

9.2.1 Консерватизм, очевидность и предположения

Гидролог обязан быть консервативным при проведении каждой корректировки данных. В разделе 9.7.2 даны рекомендации о том, как правильно использовать строгие критерии для изменений или добавлений значений данных. Это всегда должно делаться с использованием допущений, основанных скорее на доказательствах, чем на предположениях. Если сделано то или иное предположение, оно остается в рамках ответственности пользователя, поскольку вся необходимая для этого информация может быть у него под рукой (например, в виде примечаний в полевом журнале или комментариев, хранящихся отдельно от базы данных).

Другое важное правило заключается в том, что каждое изменение в данных должно быть записано таким образом, чтобы другие могли понять, что именно было сделано и почему. Необходимо для объяснения обращаться к лицам, которые произвели изменения. Достаточно иметь журнал задокументированных процедур, с помощью которого можно будет проследить и проверить процесс работы с данными. Это условие тоже является требованием системы контроля качества.
9.2.2 Стандарты и требования точности данных

Гидрологическая служба или соответствующее агентство должны сформулировать стандарты данных в отношении разрешения и точности для каждого параметра. Этот процесс должен осуществляться в соответствии с международными стандартами, подробно описанными в Руководстве по климатологической практике (ВМО-№ 100), а также с учетом потребностей в данных сегодняшнего и, что возможно более важно, завтрашнего дня.

При разработке стандартов данных важно различать разрешение, точность, ошибки и неопределенность:

a) разрешение измерительного прибора или техники — это малейшее приращение, которое может быть замечено при измерении. Например, устройство регистрации данных или датчик давления часто могут измерить с точностью до 1 мм, но фактическая точность может быть меньше из-за эффекта гистерезиса в регистрирующем устройстве;

b) точность измерения — характеристика того, насколько точно оно отображает реальное значение. Однако поскольку реальное значение часто неизвестно, точность гидрологического измерения обычно выражается относительно статистического понятия вероятности. Точность — это качественное понятие, хотя иногда оно используется как количественное. В таком случае она надежна только в качестве некого показателя; любые серьезные оценки могут быть получены только в условиях неопределенности (см. ниже);
Глава 9. Обработка данных и контроль качества

9.3 Кодирование

9.3.1 Общие положения

База данных обязательно должна содержать различные поля для используемых кодов, а также поля, содержащие значения данных (также см. раздел 2.3.2). Различные способы описания данных, от которых зависит смысл этих данных, обязательно должны быть закодированы, поскольку такие файлы более компактны и обладают меньшей неопределенностью. Яркий пример — кодовое число для каждого пункта наблюдения. Некоторые коды, такие как номер пункта, могут быть ключом к базе данных, а другие коды — описывать стандартные методы, качество данных, единицы измерения и параметры. В зависимости от структуры базы данных, коды могут требоваться для того, чтобы обозначить, какой параметр описан данной переменной (или же, в качестве альтернативы, это может быть определено форматом файла).

Системы кодирования информации должны быть исчерпывающими и гибкими, а персонал, занимающийся сбором данных, следует призывать в полной мере использовать все имеющиеся варианты. Кроме кодирования для осуществления руководства процессом обработки данных следует подготовить комментарии, которые представляют собой общее описание данных за определенный период времени и автоматически дополняют информацию, поступающую потребителям.

9.3.2 Разработка кодов

Для разработки и использования кодов необходимо предпринять следующие шаги:

а) определить данные, которые необходимо кодировать. Обычно это описательные атрибуты данных, которые часто используются (например, название местности и переменных, методы анализа, единицы измерения и показатели качества данных);

б) решить, когда провести кодирование. Для того чтобы удовлетворить общим требованиям записи или ввода данных, кодирование следует проводить во время сбора информации гидрологическим наблюдателем или техником-лаборантом;

в) рассмотреть возможные нынешние и будущие связи с Географической информационной системой (ГИС) (см. раздел 9.3.8) при компиляции кодов. Например, полезным может быть получение номерных кодов станций и рек в ГИС;

c) получить или подготовить таблицы кодов, внести коды в отчетные формы, таблицы данных и в компьютерные системы, а также включить инструкции по кодированию (соответствующими таблицами кодов) в папку технических инструкций;

d) обучить наблюдателей кодированию, внимательно контролируя заполненные формы в началный период после введения или изменения кодовой системы. Это должно выполняться в течение нескольких месяцев, чтобы техники могли хорошо изучить систему кодирования.
Большинство используемых в гидрологии кодов являются цифровыми. Однако применяются также различные сочетания цифровых и буквенных значений. Буквенные или буквенно-цифровые коды широко применяются для регистрации материалов бурения и других описательных данных, как, например, классификация почвы с точки зрения землепользования. Типичное использование кодов в гидрологических системах рассмотрено ниже, а также и в NAQUADAT Dictionary of Parameter Codes (Словарь параметров кодов NAQUADAT) (Environment Canada, 1985).

9.3.3 Коды местоположения
Обычно существуют кодовые значения для бассейна или бассейна притоков, которые желательно внести в материалы описания станции (глава 2). Это позволит быстро идентифицировать все станции (или станции, измеряющие отдельные переменные) в одном бассейне или их группе. Дополнительная информация о цифровом обозначении станций дана в разделе 2.5.2.

9.3.4 Коды переменных (параметров)
Этот раздел охватывает самую большую группу кодов. Диапазон гидрологических и связанных с ними переменных, которые могут быть включены в общую базу данных, огромен. К счастью, несколько гидрологических служб подготовили и опубликовали перечень кодов переменных (Environment Canada, 1985; United Kingdom Department of Environment, 1981).

Таблицы кодов обычно включают четыре или пять цифр для обозначения переменной, текстовое определение переменной и, возможно, некоторые сокращения или синонимы. Одним из различий в таблицах является наличие или отсутствие в кодах единиц измерения и методик анализа (особенно для лабораторных данных). Так, в одной системе код переменной 08102 означает растворенный кислород, измеренный в мг·л⁻¹ с помощью устройства для измерения растворенного кислорода, тогда как в другой системе та же переменная обозначается как 0126 (растворенный кислород) с кодом для единицы измерения, равным 15 (в соответствующих таблицах значения 0126 и 15 соответственно означают мг·л⁻¹ и метр).

9.3.5 Коды квалификации данных
В случае если сбор данных осуществляется вручную, принято иметь готовый набор кодов для наблюдателя-гидролога и лаборанта, которые бы помогли квалифицировать необычные и искаженные данные, с тем чтобы в дальнейшем эту информацию соответственно использовать. В основном существуют две группы квалификации — первую можно рассматривать как современное состояние (надежность) значения данных, а вторая указывает на некоторые второстепенные условия, которые могут вызвать проявление нехарактерного значения. Для обеих групп обычно используется только буквенный код, также известный как «флажок».

«Флажки» могут также использоваться для обозначения фоновых условий:

- E Оценочное значение, полученное при удовлетворительном вычислении;
- U Сомнительное значение, представляется неверным, но не поддается проверке;
- G Значение, выходящее за тарировочный диапазон и диапазон измерения (пределное значение);
- L Значение, меньшее нижней границы обнаружения (пределное значение);
- V Значение, находящееся за пределами обычно принята диапазона, но проверенное.

Если в массиве данных присутствуют «флажки», их следует вводить и хранить вместе с информацией, к которой они относятся. При компьютерной проверке исходных данных могут появиться много флажов состояния, к которым можно применить такие же коды.

Кроме того, некоторые системы баз данных позволяют вводить в систему комментарий на легко понимаемом языке (обычно в связанную базу данных текстовых файлов).

9.3.6 Коды пропусков в данных
Очень важно делать различие между случаем отсутствия данных и случаем данных с нулевым значением.
Глава 9. Обработка данных и контроль качества

9.4 Сбор данных

Термин «сбор данных» используется для обозначения процесса получения данных, имеющихся в письменном виде, графическом виде, на перфоленте, а также в аналоговой или цифровой электронной форме и для переноса на носитель, где эти данные могут быть впоследствии обработаны, сохранены и проанализированы. В последние годы этим носителем почти всегда является компьютер, вероятно, центральный процессор, но чаще всего используется персональный компьютер (ПК), по возможности подключенный к сети.

9.4.1 Ввод с клавиатуры

Данные, собранные в виде записей в блокнотах или на специально предназначенных для этого бланках, должны вводиться в компьютер вручную. Даже если возможно использование какого-либо типа сканирования с оптическим распознаванием символов, обычно лучше этого избегать, если только методика не является гарантированно безошибочной.

В случаях, когда наблюдатели должны записывать измеренные значения на бумаге, рекомендуется быть их в стандартизированной форме (например, в книге), в которой все записи будут вноситься в ясном и логичном порядке. Такие формы могут быть сделаны в виде текстового редактора, предназначенного для обработки текста на компьютере. Выпуск и использование таких данных должны находиться под контролем организации в рамках процесса обработки данных.

Рекомендуется организовать процесс сбора и ввода данных таким образом, чтобы ввод с клавиатуры был децентрализован, и персонал, ответственный за сбор данных, также был бы ответственен за их ввод и начальные стадии проверки их качества. Поэтому файлы данных обычно создаются на компьютере, который не должен быть подключен к сети (за исключением облегчения резервного копирования и передачи). Поскольку размер созданных файлов будет небольшим по сравнению с объемом памяти компьютера или устройств хранения данных, таких как дискеты, резервные копии файлов с данными могут быть сохранены и переданы для архивирования на месте согласно существующим правилам обработки и проверки данных.

Минимальный процесс проверки данных, введенных с клавиатуры, заключается в том, что распечатка сравнивается, запись за записью с оригиналом в отличие от вводившего данные лицом. Улучшить процедуру проверки данных можно путем построения удобных графиков. Даже простейшие
распечатки графиков могут быть полезными. Если это возможно (особенно в тех случаях, когда вводятся большие объемы данных), полезно использование ряда методов автоматической проверки данных, таких как контроль по диапазону и сравнение предыдущих и/или последующих значений, включенных в программу ввода данных.

9.4.2 Запись данных графика
Аналоговые записи таких параметров, как уровень воды и количество осадков, широко собирались в прошлом, и эта технология по-прежнему используется благодаря преимуществам быстрой трактовки результатов, простоты и невысокой стоимости смены приборного обеспечения.

Запись данных на компьютер может быть сделана путем набора на клавиатуре показаний, снятых вручную, или же путем оцифровки данных с цифрового планшета или сканера. Ручное считывание обычно подразумевает наличие человека, считающего серию значений в течение определенных временных интервалов и трансформирующего их в форме, из которой они позже могут быть занесены в компьютер, как описано в разделе 9.4.1.

Планшет или планшетная оцифровка — это наиболее широко используемый метод. Его эффективность в определенной степени зависит от умения оператора не вставлять случайные ошибки в запись данных. Использование сканера с программным обеспечением для интерпретации записи является сравнительно недавней разработкой, но не очень распространенной по причине тенденции к электронным регистрирующим устройствам.

Каким бы ни был метод, график должен быть отпечатан с указанием даты, времени суток и уровня воды, а также с учетом времени установки ленты на самописец и времени ее снятия. Поскольку этот путь подразумевает некоторое преобразование изначальных наблюдений, необходимость в ясных комментариях очевидна. Самым полезным средством для проверки данных на графике является создание диаграммы данных после их записи для сравнения с оригинальной диаграммой. Лучше всего, если эти диаграммы распечатываются в том же масштабе, что и оригинальная диаграмма, поскольку в этом случае их можно наложить одну на другую (например, на подсвеченном столе), после чего легко найти и исправить все ошибки.

9.4.3 Данные на перфоленте
Электромеханические инструменты записи широко использовались с 1960-х по 1980-е гг., но в большинстве своем были заменены. Эти устройства перфорировали закодированные двоичным кодом десятичные значения на каждом интервале времени на бумажной перфоленте, что стало первой повсеместно используемой машинночитаемой формой записи. Такие данные могут быть быстро прочитаны оптическим считывателем и записаны в компьютерный файл.

Методики обработки таких данных похожи на более поздние методики, используемые для полупроводниковых регистрирующих устройств, а процессы проверки, разработанные для данных на перфоленте, послужили основой современных методов обработки электронных данных.

9.4.4 Регистрация электронных данных
Электронная память для хранения данных наблюдений, полученных с датчиков с разными формами электрического выхода, использовалась с 1970-х гг., но наиболее широкого распространения достигла в течение двух последних десятилетий XX века. Поскольку стоимость остается в разумных пределах, подобные устройства стали больше походить на компьютеры и легче совмещаться с ними.

Поскольку перевод данных в электронный код — это одна из основных задач устройства регистрации данных, этот этап обработки данных стал проще. В то же время эта технология, как правило, допускает появление более серьезных и широко распространенных ошибок, поэтому контроль качества должен быть по крайней мере столь же строгим, как для других технологий.

В отличие от графиков, форм и перфолент, электронные файлы данных не существуют в материальной форме, что препятствует их легкой идентификации, отслеживанию и предоставлению свидетельств внесенных изменений. Массивы данных — временные ряды, данные в точке или данные проб и их обработка должны отслеживаться в специальных учетных книгах или журналах для каждого комплекта данных. Такие журналы, из соображений простоты, целостности и удобства в использовании, как правило, являются бумажными папками форм. Однако они также могут принимать форму электронных файлов, например электронных таблиц или файлов базы данных, если установленные критерии могут быть удовлетворены.

9.5 ПЕРВИЧНАЯ ОБРАБОТКА ДАННЫХ
9.5.1 Общие положения
Первичная обработка определяется здесь как этапы по обработке, необходимые для подготовки данных к
Глава 9. Обработка данных и контроль качества

9.5.2 Предварительная проверка данных

Разница между предварительной проверкой и обнаружением ошибок довольно произвольна. Процедуры, которые в одной стране считаются предварительной проверкой, в другой могут считаться обнаружением ошибок. Кроме того, степень использования компьютера при обработке данных может изменить понятие предварительной проверки. Например, для данных, собранных вручную, а затем переведенных в компьютерные файлы (например, путем ввода с клавиатуры или оптического сканирования), термин «предварительная проверка» используется для обозначения процедур, предшествующих переводу данных в форму, пригодную для машинного считывания. Для данных, непосредственно собираемых в цифровой пригодность для машинного считывания форме, требуется лишь незначительная проверка, отличная от обычного сравнения полученного массива данных с записями, выполненными вручную (идентификация места сбора данных, правильные даты начала и окончания сбора данного комплекта данных, а также надлежащее обозначение типа собранных данных, например элементов взятых проб и частоты отбора проб).

Для данных, собранных вручную, предварительная проверка обычно включает следующие этапы:

a) регистрация факта поступления данных во время получения отчетных бланков;
b) обеспечение полноты и точности информации, т. е. дат, названия станции, номера станции, если это необходимо для дальнейшей машинной обработки;

c) обеспечение полноты данных;

d) проверка правильность расчетов, выполненных наблюдателем, если таковые производились;

e) сравнение отчета наблюдателя с записями данных.

Во многих странах последний пункт выполняют путем анализа компьютерного графика данных.

Исправления следует вносить разборчиво, чернилами, по цвету отличающимися от тех, которыми была сделана первоначальная запись, таким образом, чтобы не стереть ее. Желательно, чтобы эти исправления были датированы и подписаны внесших их лицом.

Данные, полученные от непрерывно работающих самописцев, также необходимо подвергать предварительному контролю. Необходимо сравнивать указанное на ленте время начала и окончания записи, а также время любых промежуточных отметок со шкалой времени на ленте, чтобы определить, нужна ли корректировка по времени, и если нужна, то насколько. Следует попробовать определить, вызвана ли необходимость коррекции остановкой часов, или ошибка накапливалась постепенно в течение записи. Все данные, полученные вручную, должны быть записаны на ленте в стандартном формате.

Для данных, полученных с устройства регистрации данных, предварительные проверки и сравнения с результатами, полученными вручную, обычно являются частью общепринятой практики проверки полевых данных. В зависимости от имеющегося программного обеспечения проверки могут включать выведение данных на экране до ухода со станции для подтверждения того, что все функционирует правильно. В тех случаях, когда выполнение такой процедуры возможно, ее следует включить в перечень стандартных процедур.

В камеральных условиях предварительные проверки могут включать регистрацию данных и сопроводительной информации. Целесообразно создавать резервные копии полученных данных и хранить их по меньшей мере, в трех независимых местах (например, на жестком диске ПК, а также на переносном и сетевом дисках).

Для телеметрических цифровых данных предварительный контроль может быть незначительным или
Рисунок I.9.2. Процедура двухэтапной обработки обновления гидрологических данных

ПРИМЕЧАНИЯ:
1. Ежемесячная обработка обычно начинается через 10-15 дней после окончания месяца.
2. Ежегодную обработку обычно начинают через 30 дней после окончания года.
3. Архивные файлы могут полностью храниться в автономном режиме (на лентах или дискетах) или комплексно в онлайновом режиме (например, онлайн данные последних двух лет) и автономном режимах.
4. Редактирование мелкомасштабных данных можно выполнять в онлайновом режиме с видео-дисплейных устройств (ВДУ) или с видеотерминалов.
5. Валидация и ежемесячные отчеты, показанные отдельно, могут находиться в одном документе, особенно для параметров, не требующих преобразования, например осадков.
ГЛАВА 9. ОБРАБОТКА ДАННЫХ И КОНТРОЛЬ КАЧЕСТВА

вообще не требуется перед тем, как эти данные будут переданы пользователю. В таких ситуациях пользователь должен быть предупрежден о том, что предоставленные данные являются непроверенными, и он следует использовать соответствующим образом. Даже в тех случаях, когда используется автоматическая процедура проверки данных, она будет способна проверить лишь некоторые свойства данных (например, размах, пик, шаг или недостающие значения), и пользователь должен знать ее ограничения.

Обычно, и это рекомендованная процедура, телеметрические данные заносятся в файлы на станции или в другом безопасном месте системы, а редактируются и приобретают статус архивных и/или проверенных данных только после прохождения полного набора предварительных проверок (как это было описано ранее для устройства регистрации данных), а также проведения процедуры обнаружения ошибок и валидации. Если при этом используются коды качества, они могут помочь пользователям понять описанные проблемы.

9.5.3 Прослеживаемость и обработка

Гидрологические данные ценные тем, что они являются относительно дорогими и незаменимыми, а также потенциально имеют высокое значение после определенных событий. Чтобы понять и сохранить их значимость, должны существовать способы проверки точности, дающие определенные гарантии того, что ошибок почти нет. Поэтому обязательна прослеживаемость данных и методов, используемых для их сбора и обработки, которые должны быть доступны в простой для понимания форме. Гидрологические агентства должны устанавливать процедуры, направленные на достижение такой прослеживаемости, в сочетании с эффективной обработкой данных в процессе хранения и проверки их целостности.

Система обработки данных включает обеспечение следующим:

а) регистрация данных после их сбора с целью подтверждения их существования и отслеживания их обработки;

б) хранение резервных копий данных в их оригинальной форме;

в) непосредственная идентификация отдельных массивов данных на различных стадиях их обработки;

c) сравнение текущего статуса данных с изначальным, и их тестирование с точки зрения пригодности для использования;

d) представление и хранение доказательств любых изменений данных;

e) хранение всех полевых наблюдений, журналов, форм, и т. д., которые подтверждают данные;

г) контроль объема и типа редактирования, который может быть выполнен, и предоставление на это разрешения;

д) представление данных несколькими способами для проверки и контроля компетентными лицами, которые практически не имеют отношения к процессу обработки данных.

9.5.4 Запись данных и отслеживание изменений в них

Как только данные попадают в полевой офис (посредством телеметрии, компьютерных файлов, таблиц или форм, заполненных вручную), они должны быть введены в ту или иную форму регистрации данных; обычно такие формы или журналы систематизированы по типам станций и данных и представляют информацию в хронологическом порядке.

Такие формы обычно представляют собой листы бумаги, помещенные в папку (это можно сделать и в электронном виде), хранятся в гидрологическом офисе и ежедневно обновляются по мере поступления новых данных. Эта процедура начинается с записи начальных и конечных временных координат массива данных и продолжается подтверждением редактирования, проверки и обновлением базы данных. Каждый шаг должен быть подписан инициалами сотрудника и датирован. Это делается для того, чтобы персонал был хозяином положения, ответственным за проделанную работу и ход ее выполнения. Поэтому формы или журналы с полученными данными должны включать проверенную хронологическую запись всех проведенных мероприятий по обработке данных в полевом офисе.

9.5.5 Идентификация и сохранение оригинальных записей

Все данные должны постоянно быть идентифицированы с использованием номеров станций и других обязательных кодов. Таблицы должны сопровождаться штампами или ярлыками для напоминания о датах и времени, считывании данных вручную, и т. д., с учетом времени установки ленты на самописец и времени ее снятия. Формы, карты и другие жесткие копии должны быть изготовлены с полями, которые напоминают персоналу необходимую информацию.

Этот материал должен быть заархивирован на неопределенный период времени в подходящем сухом и безопасном складе с хорошо организованной системой индексирования, обеспечивающей возможность быстрого обнаружения необходимых комплектов данных. Для предотвращения нежелательных эффектов, например появления плесени, насекомых, паразитов или птиц требуется принятие определенных
мер безопасности. Некоторые носители могут посте-
пенно стать нечитаемыми по другим причинам. На-
пример, перфорированная бумажная лента с под-
ложкой из фольги может спрессоваться при тесном
обматывании, и ее станет сложно читать, поскольку
устройства для считывания перфолент и их программ
ное обеспечение устарели и не работают. Если это
случается, рекомендуется использовать возможность
перевода информации на перфоленте в графический
формат для хранения этой информации в электрон
ном формате. Такое решение должно основываться
на анализе рентабельности.

Для создания и хранения электронных данных необхо-
димо иметь соответствующую систему наимено-
вания файлов и архивом неизмененных оригинальных
файлов данных. Допустимо и обычно рекомендуется
видоизменять имеющиеся файлы в надежный читае-
мый компьютером формат, который будет включать
номера или названия станций и другие идентификаторы,
чтобы в будущем не зависеть от программного
обеспечения или носителей, которые к тому времени
устареют. Менеджерам, ответственным за обработку
данных и организацию баз данных, рекомендуется
обращать внимание на эту проблему при разработке
и обновлении их файловых систем.

Также рекомендуется сохранять оригинальную запись
dанных на жестком носителе в форме
удобного крупномасштабного графика или, возможно,
распечатки значений, если комплект данных невелик.
Эта информация сначала заносится в файл в офисе
обработки данных, как в виде резервной копии, так и в
виде записи всех сделанных изменений, модификаций
и других манипуляций с данными, которые должны
быть подписаны и датированы обработчиком. Другие
dокументы, такие как графики, построенные после
выполнения модификации данных, должны быть
прикреплены к отредактированным данным и при
наличии соответствующих комментариев это может
стать простой, но полной записью обработки данных.
Более совершенное программное обеспечение может
включать в себя опции по организации таких записей в
электронном формате, а некоторые организации
могут разработать собственное программное обеспе-
чение для баз данных; однако бумажные системы
хранения данных обычно проще, пожалуй, более
надежны и прости для понимания и использования.

9.5.6 Преобразование данных с учетом известных ошибок
Речь идет об ошибках, которые обнаружены наблюде
телями или лицами, отвечающими за осуществляемый
вручную контроль качества поступающих комплектов
данных. Исправление этих ошибок нужно произвести
do валидации данных. Такие ошибки могут возникать
либо в результате постепенного отклонения часового
механизма в измерительных или записывающих
устройствах, либо вызываться дискретными явле-
nиями, например остановкой часового механизма
или сбоем в работе электроники. В первом случае
база данных, содержащая рассматриваемый време
ной ряд, может автоматически выполнить необходи-
mую корректировку при помощи линейной или
более сложной интерполяции между зафиксированны
ными значениями. В последнем — обычно возможно
вручную оценить недостающие значения, которые
могут быть вставлены при определенных условиях
(см. раздел 9.4 выше), если период пропущенных
dанных не слишком продолжителен и при наличии
dостаточной фоновой информации.

Исправления могут также потребоваться и для компе-
нсации более сложных явлений, например наличия
льда на водомерном посту. В этом случае, скорее все
го, исправленные значения могут быть рассчитаны
вручную, при этом необходимо строго контролировать,
направляя допустимые сделанные предположения.
Сообщения об ошибках должны привести к использованию стандартных
процедур и форм для ознакомления с ними персонала,
занимающегося обработкой данных. Такие формы
можно использовать для того, чтобы отметить вне
сенные поправки к уровням или стоку. Существенная
черта процесса исправления, произведенного вруч
ную или на компьютере, заключается в том, что все
исправленные данные должны быть помещены «флаж
ками», указывающими на все сделанные изменения,
и/или сопровождаться комментариями.

В тех случаях, когда возникает необходимость в ис
правлениях временных значений или параметров в
eдной партии данных, в первую очередь следует от
ветить на следующие вопросы:
a) Есть ли действительные причины для исправле
ний?
b) Согласуются ли исправления с предыдущей пар
тией данных?
c) Нужна ли доработка в поле, и осведомлены ли об
этом полевой персонал или наблюдатели?
Ответы на вопросы а) и b) должны быть полностью
закомплектованы в описании процедуры обра
ботки данных.

9.5.7 Накопление и интерполяция
данных
Измерения многих переменных, в связи с их природ
ной динамикой, должны проводиться в течение срав
нительно короткого периода, но затем они будут ис
пользоваться только в виде усредненных или суммарных
значений за довольно длительные периоды времени.
Таким образом, для многих гидрологических задач характеристики климата могут быть нужны только в виде их суточных значений, но для получения надежных среднесуточных данных измерения следует проводить чаще. Хорошими примерами в этом смысле являются температура и скорость ветра, но во многих случаях это справедливо и в отношении данных об уровне и расходе воды. В прошлом, когда стоимость хранения данных на компьютере была более значительной, уровни агрегирования выходных данных и данных, предназначенных для хранения, иногда отличались. Современные базы временных рядов в основном имеют все возможности для эффективного хранения и поиска данных, которые позволяют архивировать все типы данных. Данные с высоким уровнем агрегирования, например средние величины за месяц или год, могут использоваться для отчетности и публикаций, но их легко подсчитать путем перемножения двух основных временных рядов стока и концентрации этих величин.

9.5.8 Вычисление производных переменных

Производные переменные — это те параметры, которые не измеряются непосредственно, а вычисляются с использованием других измерений. Самыми часто приводимыми примерами являются сток и потенциальное суммарное испарение. Но полный спектр производных переменных чрезвычайно широк и включает много показателей качества воды.

Одно из наиболее важных управленческих решений заключается в ответ на вопрос, есть ли необходимость в хранении производных переменных в базе данных после того, как их оценили и включили в отчет. Соответственно очевидно, что для данных, которые могут быть получены из основного фонда, не следует оставлять места для хранения, поскольку оно ограничено. Например, обычно не хранят данные о расходах наносов и растворенных солей, поскольку они редко используются, а их легко подсчитать путем перемножения двух основных временных рядов стока и концентрации этих величин.

Рассмотрим два других примера, иллюстрирующих это. В США Система хранения и поиска данных о воде (WATSTORE) (Hutchinson, 1975; Kilpatrick, 1981) содержит ежедневные средние значения о стоке, которые доступны в онлайновом режиме. В Новой Зеландии Система данных временной зависимости (TIDEDA) (Thompson and Wrigley, 1976) хранит только уровни в исходных форматах временных рядов и по требованиям рассчитывает расходы воды и другие производные переменные. Единственное незыблемое правило заключается в долгосрочном хранении исходных данных, независимо от дальнейшего использования, в автономном режиме и в надежном месте.

Более современные базы данных обычно обладают возможностями, при наличии которых перерасчет не является проблемой. Вместе с внедрением регистрирующих устройств с существенными встроенными возможностями программирования и обработки более существенной проблемой является то, должны ли эти переменные рассчитываться накопителем данных еще до первичной обработки данных. Не рекомендуется производить вычисления для контроля и достижения стандартизации методов; гораздо проще проверить метаданные в системе обработки данных, чем внутри программ ряда устройств, которые неизбежно станут несовместимыми как с течением времени, так и от региона к региону.

9.5.9 Статус данных

Статус данных должен подлежать тщательному мониторингу для того, чтобы определить, есть ли необходимость в их валидации или редактировании, или же эти данные находятся в своем окончательном виде и готовы к использованию. Некоторые системы баз данных добавляют код для обозначения этого; другие предоставляют лишь ограниченный доступ для манипуляций и редактирования в соответствии со статусом пользователя. Например, автоматизированная система обработки данных Геологической службы США (ADAPS) имеет три уровня статуса: рабочий, находящийся на рассмотрении и одобренный. Системы баз данных, не имеющие таких опций, нуждаются во введении правил функционирования, определяющих, какие именно сотрудники имеют доступ к различным рабочим и архивным разделам, и другие привилегии, такие как защита записей в файлах. Рекомендуется по мере возможности предоставлять право управления такой системой для каждой базы данных лицу одного лица. Другое лицо, желательно старшего должностного уровня, должно также иметь право создавать резервные копии, но только при возникновении необходиности в этом.

9.6 ОСОБЫЕ ПРОЦЕДУРЫ ВЕРНОЙ ОБРАБОТКИ

Рассмотренные выше общие процедуры обработки могут по-разному применяться к различным видам гидрологических данных и поэтому необходимо рассмотреть более конкретные процедуры, обычно применяемые на практике. Как отмечалось в начале этой главы, несколько публикаций ВМО и ФАО (например, WMO-No. 634) посвящены описанию этих процедур, поэтому на них будут часто даваться ссылки. В этих публикациях в основном уделяется внимание общей теории и описанию методов преимущественно автоматизированной обработки данных. В настоящем
разделе содержится ряд дополнительной информации, необходимой для компьютеризации и расширения знаний по таким методам.

9.6.1 Климатологические данные [ГОСМН25]

Самыми важными для применения в гидрологии климатологическими переменными являются температура воздуха, испарение и суммарное испарение (эвапотранспирация), которые перечислены в порядке повышения сложности их обработки. Перед тем как приступить к рассмотрению проблемы обработки данных, полезно обратить внимание на средства, с помощью которых наблюдаются и записываются климатологические данные, поскольку это оказывает существенное влияние на последующие операции.

Широкий диапазон климатологических переменных и их изменчивый характер приводят к тому, что большинство первичных данных получается из двух источников — от постоянно действующих климатических станций и автоматических передающих климатических станций (или станций погоды). Говоря о первом типе станций, необходимо отметить важность хорошей подготовки наблюдателей, которые должны выполнять большую часть обработки на месте. Поскольку для большинства параметров обработка достаточно простая, можно ограничиться полевой обработкой информации. Даже при необходимости определения более сложных параметров, наблюдатели обычно могут их оценить при помощи специальных таблиц (меморандум), или, возможно, компьютеров или электронных регистрирующих устройств и передатчиков данных. Таким образом, если первичная обработка выполняется на компьютере, она в большой степени включает и проверку сделанных вручную расчетов.

При использовании автоматических климатических станций применяются устройства с программным обеспечением, capable способом выполнять широкий объем работ по обработке данных. В самом деле, многие климатические станции разработаны специально для обеспечения оценок испарения и суммарного испарения, обычно на основе метода Пенмана (глава 4). Однако всегда следует тщательно рассматривать вопрос, должны ли такие переменные рассчитываться самим регистрирующим устройством перед их первичной обработкой. Это не рекомендуется из-за необходимости контроля и достижения стандартизации методов. Если переменные должны быть рассчитаны, например, когда они используются в режиме, близком к реальному времени, то желательно, чтобы необработанные данные также вводились в базу данных для расчетов на основе более контролируемых и стандартизированных методов. При использовании данных автоматических климатических станций следует соблюдать осторожность, поскольку диапазон точности измерения их датчиков очень непостоянен по сравнению с большинством неавтоматических климатических станций. Подробности обработки климатических данных приводятся в Руководстве по климатологической практике (ВМО-№ 100).

Существует несколько климатических переменных, которые требуют преобразования для стандартного хранения и/или использования. Например, скорость ветра, измеренную на нестандартной высоте, необходимо преобразовать в стандартную скорость ветра на высоте двух метров, используя закон энергии скорости ветра. Подобным же образом можно откорректировать давление, чтобы оно было приведено к среднему значению уровня моря, если такие преобразования не были выполнены перед вводом данных.

9.6.1.1 Наблюдения за испарением и суммарным испарением [ГОСМН145, 150]

Когда используется прямой способ измерения испарения, можно использовать компьютер для установления надежности расчета испарения в результате проверки уровня воды (или веса лизиметра) при добавлении и отливании воды.

Для расчета испарения с поверхности озера по данным испарителя применяется соответствующий коэффициент испарителя. Иногда этот коэффициент трудно определить, и его величину нужно рассчитывать по специальному уравнению, включающему другие климатологические параметры, например: скорость ветра, температуру воды и воздуха и упругость водяного пара. Эти параметры могут быть представлены усредненными значениями за длительный период времени или значениями за период измерения испарителя. Коэффициенты испарителя или алгоритмы его расчета должны даваться в файле с описанием станции (глава 2). Если в алгоритме используются средние значения за длительный период, они также должны храниться в этом же файле.

Подробности оценки испарения и эвапотранспирации рассмотрены в главах 2 и 4. В подразделе И50 Справочного наставления по ГОМС приведены компьютерные программы для решения уравнения Пенмана.

9.6.1.2 Данные об осадках [ГОСМН26]

Данные автоматических осадкомеров часто анализируются для получения информации о характеристиках ливня, тогда как данные суммарных осадкомеров прежде всего служат для определения количества и изменения водных ресурсов.
Прежде чем анализировать показания осадкомеров, необходимо создать временные ряды с регулярными интервалами из тех нерегулярных выборок, в которые обычно записана информация. Если данные уже подверглись проверке на предварительной стадии, это преобразование формата временных рядов уже могло иметь место. Компьютерная программа для преобразования рядов должна быть достаточно гибкой, чтобы дать возможность оценивать любые временные ряды с постоянными интервалами времени, совместимые с разрешением входных данных. Вопрос о выборе подходящего временного интервала будет рассмотрен ниже.

Независимо от того, каким способом получена информация — от самописцев или суммарных осадкомеров, — в первую очередь проводится пропорциональное распределение общего количества осадков и интерпретация недостающих значений. Общее количество выпавших осадков является общественным при ежедневной записи показаний, например, когда окончания осадкомера не снимались в течение выходных. Этот показатель также используется и в осадкомерах с опрокидывающимся сосудом, которые передают информацию телеметрическим путем. Если за период выпадения осадков данные об опрокидывании сосуда не поступают, то первое же сообщение после перепой будет содержать информацию о количестве собранных осадков. Разница между этим количеством и предшествующими данными должна соответствовать общим количества осадков и определение недостающих значений осадков фактически одинаковы. Про порционально распределенные или рассчитанные значения осадков должны помечаться компьютерной программой, которая выполняет подобную обработку. Точно такая же методика может применяться и к данным самописцев с коротким интервалом записи, но оценки значений будут более низкого качества, поскольку в таких случаях обычно бывает значительно меньше близлежащих станций, а также из-за изменчивого характера непродолжительных дождей. Осадки могут быть измерены с использованием разных инструментов и на нестандартных высотах. Поэтому данные, вероятно, нужно будет для однородности привести к стандартному типу осадкомера и стандартной высоте. Подробная информация по обработке климатологических данных содержится в Руководстве по климатологической практике (ВМО-№ 100) и главе 3.

9.6.2 Данные о речном стоке

[ГОСТ Н70, Н71, Н73, Н76, Н79]

Существуют несколько шагов, необходимых для получения данных о стоке воды. На первом этапе рассматриваются временные ряды, отражающие уровень воды. На втором — выполняются измерения стока. На третьем — строятся зависимости расхода от уровня. И, наконец, на заключительном этапе при помощи построенных зависимостей выполняют расчеты расходов по данным об измеренных уровнях. Подробности методов расчета расхода воды рассмотрены в Manual on Stream Gauging (Наставление по измерению расхода воды) (ВМО-Но. 519), но в некоторых базах данных в виде временных рядов эта стандартная процедура выполняется автоматически.

9.6.2.1 Ряды данных об уровне воды

Как и другие временные ряды, данные об измеренных уровнях воды сначала должны быть проверены на предмет соответствия начального значения и соответствующей ему даты с конечным значением предшествующего ряда. Полезно, если начальная обработка данных позволяет получить максимальное и минимальное значения уровня, что дает возможность выполнить начальную проверку диапазона. Любое необычно большое или маленькое значение должно быть отмечено «флажком» для проверки факта присутствия в ряду величин в контексте измерений.

Временной ряд должен быть построен на графике с подходящим масштабом, после чего его необходимо проверить на предмет обнаружения следующих нарушений:

a) заблокирован дренаж, влияние которых проявляется в виде сглаженных пиков или необычно пологих спадов;
b) предыдущий массовый выброс, такие как попадание в самописец различных обломков или необычно пологих спадов;

режим импульсных искажений или маленькие значения, которые очевидно выпадают из контекста наблюдений или неправильны по причине несущественного большей разности между соседними элементами. Такие ситуации могут возникнуть, например, в случае появления ошибок в цифровых данных, которые должны соответствовать диапазону и портам регистрирующего устройства;

c) ошибки, вызванные перепадами уровней и ошибками при принятии мер по исправлению;

d) ошибки, вызванные переменным масштабом, такие как попадание в самописец различных обломков или других предметов в влиятельном подпора.

Если такие проблемы не были обнаружены во время полевого визита, они должны быть исследованы при первой же возможности. В случаях, когда причина не была точно определена, полная обработка данных должна быть отложена до момента, пока причина
возникновения ошибки не будет обнаружена на месте производства измерений.

Выполняемое после проверки графика описание обнаруженных проблем должно стать частью записи обработки вместе с любыми другими распечатками, показывающими изменение данных, редактирование и другую работу с данными. Помимо сделанных комментариев в описание должна быть включена следующая информация:

а) дата построения графика по имеющимся данным;
б) подпись обрабатывающего лица;
в) запись обо всех изменениях в данных, любых последующих действиях, которые изменили данные относительно тех, которые были нанесены на график (например, устранение импульсных искажений или ввод вручную данных, вследствие отклонения отлаживания илла). Обычно, если делаются какие-либо поправки, то добавляется другой график, чтобы показать их эффект, а все доказательства регистрируются.

Графики должны сопровождаться штампами с указанием даты, времени и значениями уровня в моменты установки ленты на самописец и ее снятия. Поскольку такие штампы указывают на изменения в первоначальных записях, необходимость в ясном комментарии очевидна.

9.6.2.2 Измерения стока

Расчет стока по данным измерений гидрометрической вертушкой обычно производится в полевом офисе или в поле в зависимости от имеющегося оборудования. Другие методы, такие как объемный метод, метод разбавления или акустические измерения с движущегося судна, предусматривают множество методов расчета расхода воды, которые также обычно производятся в поле или в полевом офисе. Дальнейшая обработка включает в себя проверку вычисления и, возможно, некоторую последующую обработку, если нужны какие-либо поправки, например в калибровках инструментов, весе противовесов самописца или грачичных оценках уровня.

Первичная обработка также включает в себя запись в регистрационном журнале, построение зависимости расходов от уровня, когда есть возможность, и ввод полученных результатов в базу данных. В зависимости от метода и программного обеспечения первичная обработка также может включать запись необработанных данных в файл, находящийся в соответствующем месте базы данных.

Поскольку данные измерений стока оказывают влияние на последующие расчеты, они должны пройти соответствующую проверку. Она должна включать расчет статистической погрешности с использованием признанных методов, например описанных в ИСО 748 (ISO, 1993). Если это позволяет используемое оборудование и программное обеспечение, процесс проверки должен включать в себя осмотр графика поперечного сечения и графика измеренных скоростей на предмет выявления серьезных ошибок и несоответствий. Если практический опыт подказывает наличие сильного отклонения промерного троса или неперпендикулярность скорости гидрометрическому створу, следует внести исправления, рекомендуемые в Manual on Stream Gauging (Наставление по измерению расхода воды) (WMO-No. 519).

9.6.2.3 Кривые расхода

Кривые расходы определяют связь между уровнем и расходом воды. Эта взаимосвязь выявляется после выполнения многочисленных измерений в большом диапазоне изменения стока, и непрерывная кривая расхода строится по значениям расходов и уровней воды. Несмотря на то что водомерные сооружения имеют стандартное, теоретическое соотношение расхода и уровня, все же рекомендуется его получать путем практических измерений в полевых условиях.

По традиции, кривые расхода строят вручную на графике по точкам измерений. Но во многих случаях эти кривые проводятся точнее при помощи компьютера. Если необходимо, к каждому измерению можно добавить весовые коэффициенты, которые будут отражать субъективный или статистический уровень надежности этих данных. Однако, поскольку на некоторых створах имеется несколько контрольных гидравлических точек, многие гидрологи до сих пор предпочитают считать построение кривых расхода вручную. На качество построения кривых расхода оказывают влияние многие факторы. Совершенно очевидным является то, что система по обработке данных о стоке должна уметь идентифицировать и обозначить правильную кривую расхода и быть в курсе пределов ее применимости. Особенно следует отметить необходимость хранения исторических данных о кривых расхода, что позволит в будущем заново пересчитать расходы воды.

Существуют два формата кривых расходов, подходящих для хранения в компьютере — в виде функциональной зависимости и в табличной форме. К настоящему времени больше распространены табличные формы, когда таблица составляется вручную путем снятия значений с кривой расхода. Точки снимаются таким образом, чтобы промежуточные значения расхода можно было определить путем линейной интерполяции без существенных ошибок. Функциональная форма кривой расходов имеет одно из трех происхождений:
Глава 9. Обработка данных и контроль качества

9.6.2.4 Расчет стока

Современное программное обеспечение баз данных, представленных в виде временных рядов, включает стандартную процедуру обработки рядов уровней воды при помощи кривых расходов. Возможность отражения, например, влияния небольших изменений русла на новую зависимость расходов от уровней, или поправок, используемых для корректировки этой зависимости, или сдвига в данных будет зависеть от способностей применяемого программного обеспечения.

Для всех упомянутых методов применяемая кривая расходов должна целиком покрывать размах уровней воды за период наблюдений, и, если необходимо, она должна быть экстраполирована признанным и надежным способом и быть корректной для рассматриваемого периода времени. Значения уровня должны быть протестированы в отношении всех введенных поправок на дату проверки, систематической погрешности датчика и ошибки по времени. Там, где кривые расхода привязаны к искусственным сооружениям с часто изменяющимся характером воздействия, например затворам и шлюзам, для точного выбора компьютером кривой расхода может понадобиться временной ряд контрольных настроек таких сооружений.

Хотя компиляция кривых расходов проста в теории и является стандартизованной процедурой, часто возникает необходимость в некоторой трактовке результатов, или требуется принятие решений. Это происходит из-за возможности такой ситуации, когда число и время выполнения измерений расходов воды будут неточными по причине практических сложностей в выполнении этой работы. Возможно, что для ответа на следующие вопросы потребуется привлечение профессиональных знаний и опыта гидролога:

a) Какой из наводок, прошедших между двумя успешными измерениями расхода, вызвал сдвиг или изменение кривой расходов?

b) В какой период, например половину, следует поступательно перейти от одной кривой расходов к другой?

c) Следует ли придавать меньшее значение измерениям пикового стока, произведенным в плохих условиях или с использованием менее точных инструментов, если при нанесении таких точек на график они оказываются дальше от кривой, чем это следует из экстраполяции скорости потока и площади поперечного сечения?

Эти и другие подобные вопросы могут привести к тому, что кривые расхода подвергаются внимательному осмотру и иногда пересмотру после проведения дополнительных измерений в особенности пикового стока.

Проблема, с которой часто встречаются при использовании нескольких кривых расходов, заключается в том, что при переходе с одной кривой на другую могут происходить резкие изменения получаемых значений расхода воды. Если система обработки не в состоянии выполнить расчеты стока путем слияния разных кривых, требуется некоторые меры исправления расходов вручную в процессе перехода от одной кривой к другой. Если изменяются значения уровня, а не кривая (что делать не рекомендуется), то необходимые для достижения требуемого эффекта смещения кривой могут изменяться во времени.

Сдвиг значений уровней вместо построения новой кривой расходов не рекомендуется, потому что:

a) если исходные данные подвергаются правке (которая на самом деле является неправильной), значительное внимание и ресурсы должны быть направлены на обеспечение сохранности и проверки сдвигов значительно усложняет применяемые методы;

b) процесс контроля качества (такой, как нанесение значений уровня на гидрограф или нанесение отклонений значений кривой расходов) становится более сложным в исполнении и использовании.

Используя современное гидрометрическое программное обеспечение, намного легче компилировать и использовать новые кривые расходов. В этом случае исчезает необходимость изменять в качестве «обходного пути» данные об уровне воды.

9.6.3 Данные о качестве воды

При первичной обработке данных о качестве воды выделяют четыре вида деятельности:

a) проверка лабораторных значений;
b) преобразование единиц измерения и перевод величин в стандартную контрольную шкалу;
в) расчет показателей качества воды;
d) расчет баланса массы.

Проверка лабораторных результатов может включать перерасчет величин, вычисленных вручную, и/или последовательную проверку разницы между величинами. Эти мероприятия существенно дополняют методику оценки достоверности данных.

Для хранения в базе данных однородных значений очень важна стандартизация единиц. Эти операции обязательны включают преобразование используемых единиц измерения, например, сравнение их со стандартными единицами или приведение в соответствие с ними — значение растворенного кислорода и электропроводимости преобразуют в соответствующие величины при стандартной температуре воды, равной 20 °C.

Показатели качества воды обычно получаются из эмпирических зависимостей, которые используются для классификации и характеристик воды для тех или иных целей. Таким образом, существуют показатели годности воды для питьевых нужд, показатели возможностей очистки, показатели токсичности и жесткости воды. В связи с тем, что эти показатели получены на базе основных комплектов данных о качестве воды, как правило, нет необходимости хранить их после передачи. По необходимости, они могут быть вновь введены в компьютер.

Некоторые показатели имеют большое значение для водного хозяйства. Например, эмпирические связи ключевых переменных очищенных сточных вод можно использовать в качестве основы для схемы платежей за очистку сточных вод. Чем выше показатель, тем выше плата.

Расчеты баланса массы проводятся для того, чтобы определить объем загрязнений и в качестве проверки надежности данных о качестве воды Количество загрязняющих веществ вычисляется как произведение их концентрации и расхода воды (или объема воды для озер и водохранилищ). Путем расчета объема загрязнений в нескольких точках речной системы можно обнаружить источники загрязнения, которые иначе трудно определить из-за изменчивости стока. Определение, что расчеты баланса массы нужно выполнять после вычисления стока. Легко выполнить расчет баланса массы для консервативных компонентов качества воды, т. е. таких, которые, несмотря на перемену совсем не меняются или меняются очень медленно.

9.7 ВТОРИЧНАЯ ОБРАБОТКА

Вторичная обработка здесь рассматривается как шаги, необходимые для производства данных в конвертированной, суммированной или сокращенной форме, например суточное количество осадков из данных об отдельных дождях или среднесуточные расходы, полученные из данных об уровне при помощи кривой расходов. Кроме того, термин «вторичная обработка» покрывает вторичное редактирование, выполняемое после более сложной проверки, а также заполнение пробелов в записях.

В рамках вторичной обработки также может выполняться перегруппировка данных, предприниматься дополнительные шаги по их кодированию, а единицы измерения могут преобразовываться в стандартные, принятые в базе данных. Преобразование нерегулярных временных рядов в регулярные также является одной из часто используемых операций. Существует много способов для сжатия информации, преобразующих ее в более компактный вид для хранения, но использование современной компьютерной техники и программного обеспечения снижают потребность в сжатии данных.

9.7.1 Проблемы, обычно возникающие после компьютерной обработки

Важнейшая задача, характерная для обработки любых видов данных и заключающаяся в необходимости регистрации всех операций, произведенных с данными, в большой степени актуальна и для данных о стоке. Эти операции включают в себя решения, какие комплекты данных следует сохранять, а решение забраковать ту или иную партию данных по причине ее избыточности или ошибочности может быть случайно применено по отношению к партии качественных данных. Рекомендуется сохранять только самые важные основные данные и их запасные копии, и, вероятно, в зависимости от способностей программного обеспечения баз данных, некоторые вторичные данные, для расчета которых требуется много времени. Например, в некоторых системах для получения
ГЛАВА 9. ОБРАБОТКА ДАННЫХ И КОНТРОЛЬ КАЧЕСТВА

I.9-17

среднего суточного стока требуется много времени, поэтому эти данные сохраняются в первую очередь. С другой стороны, некоторые агентства используют программное обеспечение (например, такие пакеты, как TIDEDA в Новой Зеландии или Time Studio в Австралии), которое позволяет быстро рассчитывать такие данные при помощи кривых расходов по архивным данным об уровнях, и поэтому смысл в их хранении, кроме как для немедленного использования, нет. (Так поступать целесообразно по той причине, что упомянутые системы позволяют легко перестроить кривые расходов при появлении новых данных об измеренных расходах, поэтому большая часть новейших данных сразу становится доступной для пользователей). (Подробности о компоненте ГОМС, TIDEDA, доступны на сайте WMO по адресу: http://www.wmo.int/pages/prog/hwrp/homs/Components/English/g0621.htm).

В зависимости от используемых систем, а также с целью обеспечения методических рекомендаций, следует хранить следующие стоковые данные:

а) оригинальные данные об уровнях (файлы регистрирующего устройства, преобразователя или на-kopителя данных должны присутствовать там, где появляется любая информация о станции и време-ении/дате);

б) полевые данные, относящиеся к поправкам време-ени и уровня, а также исправления, которые были сделаны во время первичной обработки, имя сотрудника, который их сделал, и даты введения поправок;

в) исправленные данные об уровнях, т. е. откоррек-тированные по дате, высотной отметке уровнемера и учитывающие ошибки по времени. Рабочую копию и, по крайней мере, одну запасную, нужно сохранить (вне сети);

г) гидрометрические измерения в их первоначаль-ной форме (записанные либо на карточках, либо в компьютерных файлах, например в виде данных акустического профилометра Доплера для измерения течения (АПДТ));

д) кривые расхода, также в своей первоначальной форме (например, в виде бумажных графиков или файлов графического редактора);

е) поправки на отклонение различных кривых;

ж) если важно — среднесуточные расходы;

з) данные об использовании воды в бассейне для восстановления естественного стока, если они рассчитаны.

Обычно все остальные комплекты данных являются промежуточными и могут легко определяться из этих базовых рядов данных.

Необходимо хранить все электронные данные в авто-номном режиме и вне станции. Рекомендуется сделать несколько резервных копий с различными частотами перезаписи. Долговременную запись следует хранить в другом городе. Оригинальные бумажные записи должны храниться в специально предназначенном для этого огнеупорном и защищенном от воды месте со строго ограниченным доступом или, если это рентабельно, они могут быть отсканированы и храниться в электронном виде.

9.7.2 Ввод оценочных недостающих данных

Значимость данных в большой степени зависит от их полноты. Однако заполнение недостающих данных оценочными может существенно компрометировать их ценность для определенных целей, и поскольку будущие цели могут быть неясны на момент сбора или обработки данных, это должно производиться с большой осторожностью и сдержанностью. Кроме того, следует проследить, чтобы наличие добавленных данных было очевидно для пользователя, и в случае необ-ходимости процедура заполнения пробелов могла бы быть отменена.

Как уже было отмечено в разделе 9.2, гидролог обязан быть консервативным в проведении любых измене-ний данных. Агентство должно сформулировать стро-гие критерии для изменения имеющихся данных или добавления новых, и эта работа всегда должна произ-водиться с использованием предположений, основан-ных скорее на доказательствах, нежели на догадках.

Ниже представлены некоторые рекомендуемые кри-терии относительно данных об уровне воды и осадках, используемые Архивом водных ресурсов в Новой Зе-ландии (National Institute of Water and Atmospheric Research, 1999, неопубликованное руководство):

а) изменения не должны производиться, если осно-вания для предположений не являются обоснован-ными с научной точки зрения; если же в них есть необходимость, они должны быть записаны в по-рядке, представленном ниже;

б) такие изменения должны иметь объяснения, вклю-ченные в описание выполненной обработки, ко-торые могут быть сделаны на графике исходных данных в регистрационном журнале станции или в качестве комментария в базе данных;

в) общее правило — не заполнять пропуски искус-ственными данными и не получать пропущенные значения путем интерполяции. Любые приблизительные данные должны сопровождаться ссылками на соответствующие комментарии в базе данных. Исключения из общего правила не использовать синтетические данные или данные, полученные методом интерполяции, приводятся в пунктах d) и e) ниже;
d) пробел в записи уровней воды может быть заполнен прямой или кривой линией, если выполнены все последующие условия:
i) речной сток находится в состоянии естественного спада с уровнем воды ниже или таким же, что и в конце периода;
ii) установлено, что в период времени, соответствующий пропуску в данных, на водоем не выделялось существенного количества осадков;
iii) известно, что водоем свободен от отводов и расходов, которые изменяют естественный режим стока (например, электростанций или ирригации);
iv) итоговый график данных показывает последовательность данных на каждой стороне от пропуска;
v) в некоторых ситуациях (например, на электростанции), соседняя станция может измерять те же или почти те же данные. В первом случае заполнение может быть заполнено так, как если бы это была резервная запись. Во втором случае данные могут быть введены, если погрешность меньше стандартного отклонения или если корреляция между наблюдениями на этих станциях (а также соотношение амплитуд) составляют не менее 0,99. Комментарий, содержащий подробности этого соотношения должен быть записан в соответствующий файл;
vi) рассматриваемая станция не расположена на озере, на уровне которого влияют текущие или ветровые сгонно-нагонные явления (они часто изучаются, а искусственные записи не будут в состоянии воссоздать это явление).

Явное неприятие по отношению к архивным данным, которые не соответствуют строгим стандартам, имеет определенное преимущество, поскольку в этом случае организация ориентируется на последовательность тех или иных шагов, направленных на сокращение количества пропущенных данных. Поскольку многие ключевые причины потери данных предотвратимы, производственная культура, в рамках которой люди стараются улучшить положение дел в этой области, существенно влияет на общее качество данных.

В случае, если необходимо заполнить пропуски, осставленные недостающими записями, поскольку это неизбежно для некоторых видов анализа, время, потраченное на оценку на стадии предварительной обработки, может окупиться, если используются или анализируются окончательные данные. Необходимо также, чтобы первичные расчеты были сделаны наблюдателем с учетом местных условий. Однако при этом иногда случается, что восстановление ошибочных данных занимает много времени, или же для восстановления необходимо получить доступ к другим источникам информации за этот же период. Следует принять решение, несет ли ответственность наблюдатель за первичную оценку пропущенных данных, или такую оценку можно выполнить более эффективно позднее при помощи процедуры третичной обработки.

Обычно предпринимается попытка пополнить недостающие данные путем перекрестной корреляции с близлежащими станциями, особенно темами, которые находятся в той же речной системе. При этом необходимо отсечь такие возможности, включая использование концептуальных моделей водоемов. Все рассчитанные данные следует соответствующим образом обозначать «флажками» и хранить в отдельном архиве.

Многие речные системы испытывают влияние хозяйственной деятельности человека, и тенденции этого воздействия со временем меняются. Для гидрологических и водно-ресурсных исследований часто необходимо попытаться отделить эти искусственные воздействия от естественной реакции водоема, т. е. постараться получить стационарные временные ряды. Этот процесс требует большого количества дополнительной информации по всем видам прямого и косвенного водозабора и водосброса. Все изменения в стоке воды влечет за собой свободный водосброс. Влияние водопользования можно объединить в единый временной ряд суммарных изменений речного стока. После внесения в измеренные данные о стоке соответствующих поправок получают ряд естественного стока. Все измененные данные должны соответствовать образу почерчаться «флажками».
9.8 **ВАЛИДАЦИЯ И КОНТРОЛЬ КАЧЕСТВА**

В этой главе для простоты показано несколько искусственное отличие процедуры валидации данных от процедур их первичной и вторичной обработки. Процедуры валидации данных обычно заключаются в сравнении значений теста с исходными данными и часто присутствуют на разных уровнях первичной обработки, проверки данных и контроля качества. Они могут включать простые, сложные и, возможно, автоматические проверки, проводимые на нескольких этапах обработки и архивирования данных. Некоторые из них могут быть выполнены индивидуальным пользователем на выходных данных и при помощи статистического анализа.

Подобно другим элементам контроля качества, цель валидации заключается в обеспечении максимально высокого качества данных перед их передачей пользователям.

9.8.1 Общие процедуры

Несмотря на то что методы компьютерного тестирования данных становятся более эффективными и мощными, следует понимать, что эта процедура никогда не будет автоматизирована до такой степени, что гидрологу не нужно будет проверять значения, помеченные «флажками». В самом деле, для достижения лучшего результата гидрологу, возможно, придется постоянно изменять пороговые значения в программе. Кроме того, ему нужно будет регулярно принимать компетентное и взвешенное решение о том, принимать, отклонять или исправлять значения данных, отмеченные программой «флажками». Самые экстремальные значения могут оказаться правильными и очень важными при использовании гидрологических данных.

Методы валидации должны быть разработаны для обнаружения общих ошибок, которые могут произойти. Обычно выходной продукт программы будет показывать причину, по которой те или иные значения отмечены «флажками». При принятии решения о необходимости применения к данной переменной сложной процедуры проверки следует учитывать требуемую точность измерения данной переменной и возможность корректировки ошибок.

Обычно валидация комплекта данных проводится одновременно с обновлением файлов базы данных, как правило, один раз в месяц или в квартал. Некоторые организации выполняют годовые обзоры данных, в ходе которых могут применяться более тщательно разработанные процедуры валидации данных, учитываемые обновления многочисленных партнёров архивных данных. В некоторых случаях они проводятся для всего комплекта данных для той или иной станции. Такая система существенно уменьшает долю ошибок, появляющихся в центральном архиве, где обычно выполняется дальнейшая валидация. Возможно, еще более важное преимущество этой системы заключается в ответственности самих наблюдателей за большую часть процедуры проверки.

Не вызывает сомнений, что визуальная проверка графиков временных рядов опытным персоналом является быстрым и эффективным способом обнаружения аномальных значений. Поэтому большинство систем уточнения данных включают средства для построения таких графиков и выводят их на экран компьютеров, принтеров или плоттеров. Сопоставление данных с близлежащими станциями — это очень простой и эффективный путь мониторинга согласованности данных, полученных на этих станциях.

9.8.2 Методики автоматической валидации

Для того чтобы рассмотреть весь спектр методов, разработанных для систем автоматической валидации, полезно обратить внимание на абсолютные, относительные и физико-статистические ошибки.

Абсолютная проверка означает, что данные или кодовые значения имеют такой диапазон изменений, вероятность превышения которого равна нулю. Например, географические координаты станции должны находиться в пределах страны, числа месяца могут изменяться только от 1 до 31, а в цифровой системе кодирования не может существовать значения, например 43А. Данные, не прошедшие этот тест, являются неверными. Обнаружить и исправить такие ошибки обычно очень просто.

Относительные проверки включают:
a) ожидаемый диапазон изменения переменных;
b) максимальную ожидаемую величину между двумя последовательными измерениями переменной;
c) максимальную ожидаемую величину между значениями переменной на соседних станциях.

На ранних стадиях развития и использования методик допустимые пределы ошибок рекомендуется делать довольно широкими. Однако они не должны быть настолько широкими, чтобы это приводило к обнаружению трудно поддающегося обработке количества несогласованных значений. Эти пределы могут быть сдвинуты в сторону более высоких значений, когда это приводит к обнаружению трудно поддающегося обработке количества несогласованных значений. Эти пределы могут быть сдвинуты в сторону более высоких значений, когда это приводит к обнаружению трудно поддающегося обработке количества несогласованных значений. Эти пределы могут быть сдвинуты в сторону более высоких значений, когда это приводит к обнаружению трудно поддающегося обработке количества несогласованных значений. Эти пределы могут быть сдвинуты в сторону более высоких значений.
диапазоне, необходимые для выполнения относительной проверки, должны быть рассчитаны для нескольких временных периодов, включая период проведения наблюдений. Это необходимо из-за того, что при значительном увеличении временного ряда уменьшается его дисперсия. В первую очередь сравнивают ежедневные уровни воды с ожидаемым диапазоном суточных величин за текущий период времени, например за текущий месяц. Но, поскольку имеется вероятность того, что весь ряд значений был существенно (и ошибочно) завышен или занижен, следующую проверку диапазона изменений нужно проводить за более продолжительный период времени. Таким образом, в конце каждого месяца следует сравнивать текущие среднемесячные значения со средним многолетним значением за этот месяц. Таким же образом в конце гидрологического года текущее среднегодовое значение сравнивается со средним многолетним. Этот способ применим ко всем временным гидрологическим рядам.

Метод сравнения каждого значения с предшествующим (метод (b) выше) наиболее применим к переменным, имеющим существенную внутрирядную корреляцию, например к большинству рядов наблюдений за уровнем воды. В случае очень сильной внутрирядной корреляции (например, для уровней подземных вод) можно выполнять сравнения за несколько периодов, как описано выше для метода (a). Ежесуточные данные наблюдений подземных вод можно прежде всего сравнить с ожидаемыми изменениями за день, а общее месячное изменение — с ожидаемым месячным.

Метод (c) выше представляет собой производную от метода (b), но он использует критерии ожидаемых изменений скорее в пространстве, чем во времени. Этот вид проверки наиболее эффективен для значений уровня (и расхода) воды в водотоках по одному водосбору, хотя для сравнения данных о водотоках крупных бассейнов нужны специальные средства для накопления данных наблюдений, полученных с разных станций.

Для других гидрологических переменных этого метода зависит от плотности наблюдательной сети относительно ее пространственной изменчивости. Примером является преобразование суммарного количества осадков в безразмерные единицы при помощи отношения наблюдаемых величин к некоторому среднему многолетнему значению. Это приводит к уменьшению различий, вызванных характеристиками станции.

Физико-статистическая проверка заключается в использовании регрессионной зависимости между связанными переменными для прогнозирования ожидаемых значений. Примером такой проверки может служить сравнение уровня воды с суммарным количеством осадков или сравнение величины испарения, полученной с помощью испарителя, с температурой. Такая проверка обычно выполняется с данными, полученными со станций, расположенных в районах с редкой сетью, когда единственным средством проверки является сравнение со значениями связанных переменных, имеющих более плотную сеть.

Другая категория физико-статистической проверки используется для подтверждения согласованности данных с общими физическими и химическими законами.

Этот вид проверки широко применяется для данных о качестве воды.

Большинство рассмотренных относительных и физико-статистических проверок основаны на использовании временных рядов, корреляции, множественной регрессии и методик обработки поверхностных данных.

9.8.3 Плановые проверки
Стандартные проверки должны быть частью принятой в организации процедуры обработки данных и регулярно использоваться для тестирования данных. Они обычно включают проверку данных по независимым показаниям для определения ошибок по времени и величине. Проверяется тарировка приборов, и дается оценка относительно согласованности и отсутствия погрешности. Проводится визуальная проверка серии показаний и желательно графиков данных в свете ожидаемых изменений или сравнений со связанными параметрами, данные о которых также имеются.

На основе этих оценок используемые коды качества могут быть применены к тем или иным данным для определения оценки надежности. Коды могут указывать на качество полученных данных и, возможно, на степень достоверности, выраженной в виде точности данных (см. раздел 9.10, посвященный вопросам погрешности измерений). Альтернатива кодам качества — комментарии по этому поводу, прикрепленные только в случае, если данные не соответствуют заданным стандартам.

На этом этапе валидации любые подробные комментарии относительно оценки данных должны сопровождать их (или быть добавлены к любому комментарию или в базу данных кодов качества) для удобства будущих пользователей.

9.8.4 Инспекция станций
Для обеспечения хорошего качества наблюдений важно проводить на станциях периодические инспекции...
Глава 9. Обработка данных и контроль качества

Для проверки правильной работы приборов. Также, формальная письменная инспекция должна проводиться регулярно, желательно, ежегодно, для проверки общей работы оборудования (и местных наблюдателей, когда есть возможность). Инспекция гидрометрических станций и станций для наблюдения за подземными водами должна включать проверку высотной отметки измерителя для проверки и регистрации любых изменений в наблюдаемых уровнях воды.

Инспекции гидрометрических станций также включают проверку устойчивости кривой расходов. Другие обязанности инспектирующего перечислены ниже: в частности, они предполагают обзор связи между водомерными постами и уровнем нуля графика (это необходимо для того, чтобы убедиться в постоянстве отметок). Кроме того, инспекция должна включать обзор достижной частоты измерения и обнаруженные изменения в соотношении расходов и уровней. Поскольку объем работы, бюджет и ресурсы увеличиваются, работа, оставленная на усмотрение организации (например, содержание водомерных постов), игнорируется. Это печальная, но понятная и иногда неизбежная тенденция. Для получения качественных данных очень важно, чтобы ресурсы для измерения стока были бы распределены согласно приоритетам, сформулированным на основе строго и своевременно анализа вероятности и частоты изменений соотношения между расходом и уровнем.

Каждое посещение водомерного поста должно включать проверки приборов и упомянутые выше проверки соотношения расходов и уровней. Они должны выполняться как минимум два раза в год, но желательно чаще. Это необходимо для того, чтобы избежать потери данных и/или получения данных, значительно испорченных в результате наносов, вандализма или сезонного роста растительности.

Программа полевых исследований должна предусматривать посещение водомерных постов опытными специалистами или инспекторами сразу после случаев экстремальных паводков, чтобы проверить устойчивость участка русла и водомерных постов. Если измерения выполняются местным наблюдателем, то он должен быть обучен методам решения таких проблем. Кроме того, он должен сообщить о них в региональный или местный офис.

В обязанности инспектора или полевого служащего должны входить следующие действия:

a) отмечать и фиксировать любые изменения на участке наблюдений (при этом полезно иметь его схему и фотографии в цифровом формате);
b) на месте организовать проведение работ по улучшению или восстановлению участка наблюдений (например, убрать деревья, мешающие измерению осадков);

c) проверять приборы и проводить необходимые работы по их починке и настройке;

d) проверять журнал записей наблюдателя;

e) инструктировать наблюдателя относительно методики проведения наблюдений и содержания аппаратуры;

f) подчеркивать важность для наблюдателя быстро и точно заполнять и отсылать весь бланковый материал;

g) информировать наблюдателя обо всех специальных наблюдениях, которые могут понадобиться (например, выполнять более частые наблюдения во время ливней и паводков).

Для эффективного выполнения пункта е), инспектор должен быть осведомлен об ошибках, допущенных наблюдателем, особенно если он делал их однократно. Такую информацию инспектор должен регулярно получать от лица, отвечающего за проверку и контроль данных и обнаружение ошибок. Результаты инспекции следует заносить в журнал описания станций.

9.8.5 Проверка данных, собранных вручную

В основе большинства методик контроля качества данных, собранных вручную, лежат компьютерные распечатки, как правило, ежедневных данных по административному району или региону. Из таких архивов можно легко, на глаз, определить станции, на которых данные постоянно регистрируются с грубыми ошибками.

Однако к изменениям в таких данных следует подходить с большой осторожностью. Прежде чем исправить, казалось бы, очевидную ошибку, необходимо изучить материалы по станции, проверить историю станции (в отношении качества ее данных) и дать оценку тем факторам, которые вызвали данное явление (чтобы убедиться, что рассматриваемые данные в этом случае не вызваны аномальным природным явлением). Вносимое изменение должно быть закодировано или прокомментировано, чтобы показать, что внесены изменения в исходный ряд данных, и вся предшествующая информация проверена.

Другой метод, который может быть использован для проверки относительных отклонений наблюдаемого элемента в течение какого-то периода, заключается в использовании различных типов математических взаимосвязей (например, полиномов). Рассчитанная величина сравнивается с наблюденной, и если разница между ними не превышает предварительно
установленного допустимого отклонения, данные считаются правильными, а если превышает, то этим данным требуется дальнейшая проверка.

С данными, собранными вручную, а затем преобразованными к виду, пригодному для машинного считывания, ошибки которых выявлены во время предварительного контроля или с помощью специальной процедуры поиска ошибок, следует поступать следующим образом:

a) исправление необходимо делать разборчиво на оригинале бланка с указанием инициалов лица, внесшего исправление;
b) таблица или график, содержащие ошибочную данные, должны быть исправлены; следует также внести поправки во все имеющиеся копии наблюдений, а также во вторичные данные, полученные с использованием ошибочных измерений;
c) наблюдателю следует сообщить об ошибке, а если ошибка повторяется регулярно и вызвана неисправностью приборов или нарушением методики измерения, проблему следует устранить с помощью инспектора, который должен посетить станцию;
d) ошибку необходимо зафиксировать в журнале или в файле описания, чтобы на всех станциях прошла беглая проверка качества наблюдений, а также инспектора были информированы о тех станциях, где часто случаются ошибки.

9.8.6 Проверка данных с графика

Идеальный путь проверки данных, полученных при помощи сканирования или оцифровки графиков, заключается в построении точной копии с графика на основе файла данных непосредственно перед их архивированием. Если процессы построения могут точно копировать оси и масштабы, тогда два документа могут быть с легкостью визуально сопоставлены, например на столе с подсветкой. Следует заметить, что отличия между построенными графиком и оригиналом будут обусловлены какими-либо исправлениями (такими, как сокращение вспышек) и другими изменениями, которые могут быть сочтены необъяснимыми.

Если система обработки не может предоставить точную копию (т.е., скорее всего, может произойти в случае с кривой диаграммой), то графики должны сравниваться более детально, с рассмотрением показательных точек на каждом из них, с использованием линейки, если необходимо.

9.8.7 Проверка регистрируемых данных

У регистрирующих устройств весьма мало оригинальных документов, с которыми можно сравнить получаемые данные. Однако, подобно оригинальным данным, неотредактированные данные также должны быть использованы для построения графика и зарегистрированы в соответствующем файле обработки данных, собранных на рассматриваемой станции (глава 2); этот документ может быть использован так же, как и оригинальный график.

Ошибки в наблюдениях, обнаруженные в ходе выполнения описанной процедуры, так же, как и в ходе первоначальной проверки, должны снабжаться примечаниями в сопроводительных документах, которые также должны быть зарегистрированы. Как и в предыдущих случаях, и исходный, и отредактированный файл с обновленными данными должны быть отправлены в архив.

9.9 ОСОБЫЕ ПРОЦЕДУРЫ ВАЛИДАЦИИ

Методика контроля качества для разных элементов отличается. Ниже представлены примеры и описание методов валидации для нескольких видов гидрометеорологических переменных.

9.9.1 Данные о стоке

Поскольку данные о стоке непрерывны во времени и коррелированы в пространстве, для надежности всех наблюдений могут быть проверены путем интерполяции и статистическими методами. Проверки качества могут проводиться с использованием ряда методов, как это показано в следующих примерах:

a) количество осадков, построенное на одном графике со стоком или уровнем воды, может быть использовано для обнаружения паводков или наводнений, не связанных с существенным количеством осадков и наоборот;
b) графики временных рядов уровня (гидрографы) или других параметров, совмещенные с данными наблюдений, полученными вручную (включая данные, полученные с водомерных постов) в течение рассматриваемого периода наблюдений;
c) гидрографы стока, построенные при помощи кривой расходов по данным об уровнях, совмещенные с данными, полученными на гидрометрических постах (построенных с тем же масштабом);
d) кумулятивные графики годового количества осадков, совмещенные со среднемесячными осадками за весь период наблюдений, и другие совмещенные графики;
e) обнаружение шагов в данных, превышающих установленное значение (которое может меняться в зависимости от значения уровня). Этот способ
обычно помогает обнаружить скачки в виде чрезвычайно больших или маленьких значений (например, максимально возможного или нуля), обусловленные физической или электронной ошибкой;
f) обнаружение пропущенных значений (которые, с другой стороны, могут быть найдены методом интерполяции при помощи имеющегося программного обеспечения);
g) прямые линии в записях уровня, которые превышают длину ряда, задаваемую пользователем (с их помощью можно обнаружить чрезмерное сжатие данных или неверную интерполяцию от начала до конца пропуска);
h) сопоставление графиков однотипных или связанных параметров (сток, уровень, количество осадков, мутность), измеренных на соседних станциях. Если есть возможность, особенно полезным может оказаться совмещение графиков для водотоков, находящихся внутри одного и того же водосбора;
i) качественная визуальная оценка графиков, форм гидрографа и их соответствия типичному ходу эволюции данной гидрологической характеристики для данной фазы водного режима рассматриваемой реки.

Большинство программных обеспечений гидрологических баз данных имеет несколько методов валидации данных (встроенных или предназначенных для работы вручную). Некоторые из них обладают возможностью управлять процессом валидации автоматически посредством скриптовых файлов (макросов).

9.9.2 Уровень воды

Для данных об уровне воды широко применяются такие рассмотренные выше методы, как составление таблиц и построение графиков, а также проверка амплитуд колебаний и интенсивности изменений. Некоторые способы построения графиков могут быть использованы и для уровней, и для расходов воды. Однако поскольку данные о расходах могут иметь ошибки, связанные с соотношением расходов и уровней (кривой расходов), важно отдельно проверять данные об уровне (обычно в первую очередь).

Следующие процедуры представляют собой минимальный набор методов проверки данных об уровне воды:

a) сравнение с показателями, снятыми наблюдателем вручную и записанными им в начале и конце каждого комплекса данных и любыми другими величинами, записанными во время промежуточных осмотров местным наблюдателем (обычно осуществляется во время предварительной проверки);
b) графики уровня, совмещенные с любыми другими данными об уровне, введенными в базу данных, например полученными при измерении расхода воды, или данными о качестве воды (это будет зависеть от базы данных);
c) качественная проверка форм и элементов гидрографа, поиск подозрительных особенностей, таких как прямые линии, шаги, пики или паводки, наводнения и спады в случаях, когда они не ожидаются.

Кроме того, необходимо провести ряд качественных проверок, подробно описанных выше для стока. Любые явные несоответствия должны быть подробно изучены:

a) в первую очередь проверки должны определить, существуют ли уже какие-либо комментарии в базе данных или в журнале станции, или какие-либо свидетельства обработки. Наблюдатель, лаборант, обрабатывающий данные сотрудник мог уже проверить этот случай и/или отметить фактическую или видимую причину несогласованности в данных;
b) в зависимости от отмеченной несогласованности следующие пункты могут быть проверены полевым наблюдателем или сравнены с показаниями обработки данных. Некоторые могут требовать особых исследований на станции и сопоставления с предыдущими и последующими комплектами данных, например:

i) если присутствует медленный пик и спад, то может потребоваться полевая проверка успокаивающего колодца и трубы забора на предмет блокирующего ила;

ii) скачки или перепады могут указывать на то, что датчик, поплавок, регистрирующее устройство или самописец неисправны или попали под воздействие неких помех;

iii) комплект данных, который оказывается больше или меньше, чем данные на любой из сторон (или на обеих сторонах), может быть неправильно обработан и искажен либо в результате введения неправильных поправок по отношению к показаниям, полученным вручную, либо из-за смещения датчика;

iv) прямые линии в записи могут указывать на пропуск по причине отсутствующих данных, которые были неверно интерполированы, или на наличие проблем с оборудованием или датчиком, например наличие застрагивающего плавучего кабеля или же доски перпендикулярного или низкого предела;
v) повышение стока между паводками или наводнениями («спад в гору») может указывать на неправильно выполненную корректировку или на загромождение русла.
растительностью или наносами, которое означает необходимость выполнения ра́боты по переопределению связи между расходами и уровнями;

vi) постоянные дневные колебания могут указывать на проблемы с датчиком (если это датчик давления, в системе может быть влага), на образование льда на элементах управления (понадобится поправка для конвертации в сток) или на реальные причины, например испарение с поверхности русла или чередование замерзания и оттаивания на водосборе.

Естественно, лучшие методы проверки данных имеют ограниченную ценность, если они не подкреплены необходимым исследованием причин возникнове́ния ошибок, их связанность с соответствующими корректирующими действиями, включая оформлене́ние результатов, лишь возрастает. Это может быть отражено в комментариях, сопровождающих архи́вируемые данные, или в присваиваемых информа́тивных кодах качества.

Автоматизированные методы для использования многих их описанных подходов доступны как часть гидрометрических пакетов программного обеспечения или могут быть разработаны внутри них. Некоторые из них могут работать автоматически в режиме, близком к реальному времени, на основе телеметрических данных. Пример интерфейса такого программного обеспечения показан на рисунке 1.9.3.

ПРИМЕЧАНИЕ. Представляет определенный интерес вид гра́фика, показанного на рисунке 1.9.3, на котором нанесены данные о стоке воды, но который может использоваться также для проверки данных об уровнях воды. Этот график охватывает период в 13 меся́цев, и он предназначен для выявления любых несоответствий между последовательными ежегодными обновлениями основной базы данных.

9.9.3 Данные о дождевых осадках

Поскольку дожди — это очень важное и изменчивое гидрологическое явление, существует множество дождемерных постов и, следовательно, большой объем данных. В настоящее время в большинстве стран существуют хорошо организованные системы по контролю качества, сбору и хранению данных об осадках.

Система обработки ежесуточных данных об осадках в Метеорологическом бюро Соединенного Королевства рассмотрена в Руководстве по климатологической

Рисунок I.9.3. Графики временных рядов для проверки данных о речном стоке

(Источник: World Meteorological Organization/Food and Agriculture Organization of the United Nations, 1985: Guidelines for Computerized Data Processing in Operational Hydrology and Land and Water Management (WMO-No. 634))
Глава 9. Обработка данных и контроль качества

Практике (ВМО-№ 100). Ошибки, которые встречаются при сборе и обработке данных об осадках, почти универсальны, поэтому эта система должна служить образцом для многих стран.

Надежность системы, в которой используется сравнение данных, полученных от соседних станций, зависит от плотности сети. В районах, где дождемерные посты расположены редко, существует тенденция к возрастающему использованию радиолокаторов для измерения осадков (раздел 3.7). Площадные данные, полученные с помощью радиолокаторов, обеспечивают великолепную базу, как для проверки достоверности данных, так и для получения данных об осадках для районов, где отсутствуют дождемерные посты. Еще одно применение данных радиолокатора заключается в контроле данных измерений дождемерами в районах, подверженных местным осадкам большой интенсивности, например в большинстве тропических стран.

Событийная природа ливней означает, что существует несколько способов нанесения их на график и презентации данных для проверки. Они включают сбор показаний за различные интервалы времени и построение их в виде отдельных событий или в виде сумм осадков. Могут быть использованы следующие методы:

a) построить график данных об осадках, например в виде часовых сумм, и рядом построить график уровня или расхода для ближайшего водомерного поста. Чем меньше водосбор поста, тем, скорее всего, более значимым будет выполненное сравнение;

b) в дополнение к графику, описанному в пункте a) выше, можно здесь же построить предшествующие максимумы;

c) построить кумулятивные графики суточных сумм осадков за рассматриваемый период, например год, а рядом — подобные графики для соседних станций и график суммы осадков на проверяемой станции. Типичный совмещенный график показан на рисунке I.9.4;

d) построить совмещенные кумулятивные графики, как было описано выше, и кумулятивные графики средних многолетних недельных или месячных сумм, а затем сравнить текущий год или сезон с многолетними средними значениями. Также для сравнения построить максимумы или минимумы;

<table>
<thead>
<tr>
<th>Суммарные годовые осадки по станции А (1 000 мм)</th>
<th>Усредненные суммарные годовые осадки по станциям В, С, D (1 000 мм)</th>
</tr>
</thead>
</table>

Рисунок I.9.4. Совмещенный график. Совмещенная кривая, показывающая связь годовых осадков по станции А со средними осадками по трем соседним станциям. Отметим, что резкие изменения произошли в 1975 году.
Все явные несоответствия в данных должны исследоваться, насколько это возможно:

a) в первую очередь проверки должны проводиться для выяснения, есть ли уже какие-либо комментарии в базе данных или в журнале станции или какие-либо слежды обработки. Наблюдатель, полевой техник или обрабатывающий данные сотрудник могли уже проверить этот случай и/или отметить фактическую или видимую причину данного несоответствия;

b) в зависимости от отмеченного несоответствия, следующие пункты могут быть проверены полевым наблюдателем или сравнены с показаниями обработки данных. В некоторых случаях могут потребоваться особые расследования на станции и сверка рассматриваемого комплекта данных с предыдущим и последующим:

i) если данные показывают меньшее количество осадков, чем ожидалось, это может указывать на то, что датчик, регистрирующее устройство или линии связи ненадежны или попали под какое-либо воздействие; это же стоит предположить, если датчик не зафиксировал какие-либо случаи осадков;

ii) если оказывается, что дожди имеют затухающий характер (растянуты на долгий период), это может свидетельствовать о блокировке осадкомера обломками или о других помехах или свидетельствовать о накоплении снега, который постепенно тает;

iii) комплект данных, который оказывается больше или меньше, чем данные на любой из сторон (или на обеих сторонах), может быть неправильно обработан и искажен либо в результате введения неправильных поправок по отношению к показателям, полученным вручную, либо в результате использования неправильных единиц измерения или масштаба.

9.9.5 Данные о снеге и льде

В то время как водный эквивалент снега измеряется на обычных дождемерах постах, другие виды измерений снега и льда проводятся более трудно. Данные о распространении снежного покрова можно проверить только в результате накопления большого объема данных полевых наблюдений, воздушной и спутниковой съемки (разделы 3.7.4, 3.12, и 3.13). В настоящее время разрабатываются методы автоматизированной обработки снимков распространения снежного покрова (и даже его толщины и содержания воды в снеге). Хотя эти методы довольно перспективны, существуют проблемы в установлении различий между снежным и облачным покровом, а также связанные с недостаточной четкостью изображений. В дальнейшем, если не будет использоваться географическая информационная система, данные о распространении снежного покрова можно будет хранить только для получения общего представления о водосборе и для ручной обработки.
Данные о толщине снега и запасе воды в нем требуют ручной проверки путем сопоставления данных, полученных на снегомерных маршрутах, снегомерных и обычных осадкометрических постах. Из-за больших пространственных различий в снежном покрове трудно сравнивать данные разных станций. Однако существует методы установления статистической надежности наблюдений на снегомерных маршрутах в условиях снеготаяния. Для корреляции широко используется понятие градусодня и в тех случаях, когда талая вода составляет значительную часть речного стока, можно использовать определенное соотношение между стоком и водным эквивалентом снега. Зависимости температуры воздуха (и воды) представляют важность не только для расчета параметров градусодня, но также для оценки ледяного покрова и сроков дат образования и вскрытия льда.

Количественные и качественные данные о снеге и льде очень важны для уточнения многих других гидрологических переменных. Например, данные об экстремальных уровнях воды в реке в течение зимних месяцев могут быть использованы для прогноза дат образования и вскрытия льда.

9.9.6 Данные гидрометрических станций

Как уже упоминалось выше, во время обработки каждого измерения, есть целый ряд элементов, которые надо проверить, включая точность ввода с клавиатуры и поправки тарировки вертушки. Также существуют ряд методов проверки отдельных измерений, которые можно применить на практике:

a) некоторые программы расчета предоставляют наложение друг на друга горизонтальной скорости и измеренной глубины. Хотя эти параметры не связаны напрямую, для большей части русел существует определенное соотношение этих параметров. Сотрудник, выполняющий измерение, должен быть в состоянии подтвердить, что построенные им графики чувствительны по отношению к этим параметрам и выявить любые резкие отклонения от исходной кривой, что свидетельствует о том, что проводить расчет следует как можно быстрее после измерения и желательно на месте;

b) для некоторых постов может быть целесообразно проверка площади и формы поперечного сечения с учетом уровня воды, полученных из предыдущих измерений;

c) для подтверждения того, что используемый метод в состоянии предоставить нужный уровень погрешности, должна быть рассчитана теоретическая неопределенность (в соответствии с ИСО 748). Это обычно выполняется вычислительной программой;

d) построение измерений на кривой расходов может предоставить некоторую степень подтверждения. Если точки наносятся со значительным отклонением от исходной кривой, то необходимо поискать какие-либо другие доказательства вероятного изменения соотношения расходов и уровней (например, высоких паводков, повлекших изменения русла, наличие сезонной растительности или обломков);

e) при наличии соотношения между расходами и уровнями правильность уровня, использованная для построения точек, также важна, как и значение расхода. Поэтому уровень должен быть проверен на предмет соответствия с показаниями самописца (если он есть);

f) расположение измерительного створа должно быть проверено с точки зрения соответствия требованиям к собирательным данным с рассмотрением возможного отведения воды, притоков, искусственных сбросов, течений под руслом, протечек в дамбе и т.д.;

g) при использовании акустического профилометра Доплера для измерения течения необходимо проверить корректность целого ряда параметров, в том числе, были ли проведены измерения солености и концентрации, учтена ли глубина погружения инструмента, совместимы ли возможности оборудования по глубине и размаху с глубиной реки, правильна ли установка по доплеровской неоднозначности, проверено ли присутствие движения русла, в соответствии ли с требованиями, рекомендованными методики экстраполяции, приемлемо ли соотношение измеренного и незамеренного стока, были ли использованы правильные полярные кривые и были ли применены соответствующие коэффициенты вариации. Следует также убедиться, что эти процедуры соответствуют требованиям или рекомендуемым процедурам.

Для всех измерений программы валидации должна проверять обоснованность использования станций, вертикальных, винтов, кодов методов и, если возможно, корректность совмещения перечисленных. Поэтому также можно попытаться найти для каждого измерения правильность уровня, использованной на этапе построения измерений, и рекомендуемыми процедурами экспертиз. Если точки нанесены со значительным отклонением от исходной кривой, то необходимо поискать какие-либо другие доказательства вероятного изменения соотношения расходов и уровней (например, высоких паводков, повлекших изменения русла, наличие сезонной растительности или обломков);

Дополнительная информация по вопросам измерения расходов воды содержится в Manual on Stream Gauging (Наставление по измерению расхода воды) (WMO-No. 519).

9.9.7 Данные о качестве воды

Очень широкий спектр переменных качества воды привлек к переменно понятной процедуре проверки таких данных. Критерием для нее обычно
служит абсолютная проверка кодов анализа, относительная проверка ожидаемого диапазона изменений и физико-химическая проверка детерминантных взаимосвязей. Если проверка диапазона выполняется при отсутствии исторических данных, то следует отметить, что фактический диапазон многих переменных будет зависеть от того, для какой цели взята проба, а также от расположения точки пробоотбора. Таким образом, уровень растворенных солей в пробах воды, взятых из питьевых источников, будет ниже уровня солей в пробах сточной, солоноватой и морской воды.

Очень эффективны физико-химические тесты, и поэтому они широко применяются при определении качества воды.

Примеры типичных тестов для нормальных и специальных (сточные воды) проб приведены в таблице I.9.1.

Если какие-либо переменные были определены в лаборатории, и информация может быть заложена в компьютер, то ее следует использовать для уточнения исходных данных. Все материалы по станциям и качеству воды, а также кодированные значения, могут быть проверены на достоверность, и, по возможности, в сочетании друг с другом.

9.9.8 Данные о наносах

Как и с данными о качестве воды, при наличии достаточного количества материалов можно выполнить расчет баланса наносов. При наличии кривой интенсивности отложений на участке измерений, отклонение значений от зависимости можно оценить по уровню статистической значимости и/или путем проверки вручную.

9.10 НЕОПРЕДЕЛЕННОСТЬ ЗАПИСИ ДАННЫХ

Информированный пользователь будет всегда озабочен вопросом точности данных, поскольку это влияет на доверие людей к данным и полученной из них информации. Есть много способов выражения точности, многие из них неточные и иногда двусмысленны. Статистическая неопределенность является мерой объективного выражения «точности» в виде определенной амплитуды измеряемой переменной или ее части с указанием вероятности появления в ней той или иной величины.

Несколько стандартов ИСО, имеющих отношение к гидрометрическим методам, описывают вопрос погрешности с некоторым количеством подробностей, интересных для любой темы. Публикация ИСО Guide to the Expression of Uncertainty in Measurement (Руководство по выражению неопределенности измерений) (ISO, 1995) рекомендуется в качестве основного справочника по данной теме. Руководство по оценке погрешности измерений расхода воды также представлено в Техническом регламенте (ВМО-№ 49), том III, Приложение, часть VIII.

Таблица I.9.1. Проверка соответствия физико-химическим законам данных о качестве воды

1. Растворенные твердые вещества

Все результаты, приведенные в мг·л–1, должны соответствовать проверке:

0,1 · TDS > \[TDS = (Na+K+Mg+Ca+Cl+SO_4 + 4,42 NO_3 + 0,61(Alk) + 3,29NO_2 + S_2O_3 + F)\]

NO_2, S_2O_3 и F необязательны, т. е. они включаются в проверку только при их наличии.

2. Ионный баланс

а) Стандартные требования (от 8 до 12 ионов)

Ионы следуют преобразовать в мэкв·л–1 и подвергнуть проверке:

\[\text{Катионы} - \text{анионы} \times 100 < 3 \%
\]

где катионы = Na+K+Mg+Ca+NH_4,

а анионы = Cl+SO_4 +NO_3 +HCO_3 +NO_3 +PO_4 + F

PO_4, NH_4, NO_2 и F необязательны, т. е. можно проверять баланс и без них;

(продолж.)
Таблица I.9.1. (продолж.)

b) Минимальные требования (шесть ионов)

Эта грубая проверка может использоваться, когда измерены только главные ионы.

Результаты нужно преобразовать в мэкв∙л–1 и подвергнуть проверке:

\[
\text{[Катионы – анионы]} \times 100 < 10 \%
\]

где катионы = Na + Mg + Ca,

а анионы = Cl + SO\textsubscript{4} + HCO\textsubscript{3} -

3. Проводимость

0,55 проводимость (мкс∙см–1) < TDS < 0,7 проводимости (мкс∙см–1), где TDS = общему количеству растворенных твердых веществ.

4. Общая проверка качества воды

<table>
<thead>
<tr>
<th>Свойство водных образцов</th>
<th>Условие</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общее количество твердых веществ</td>
<td>> общего количества растворенных твердых веществ</td>
</tr>
<tr>
<td>Общее количество твердых веществ</td>
<td>> количества частиц, способных к выпадению водных осадков</td>
</tr>
<tr>
<td>Насыщенность растворенным кислородом</td>
<td>< 200</td>
</tr>
<tr>
<td>Растворенного кислорода, мг∙л–1</td>
<td>< 20</td>
</tr>
<tr>
<td>БПК₅ (всего)</td>
<td>> БПК₅ (на фильтре)</td>
</tr>
<tr>
<td>БПК₅ (всего)</td>
<td>> БПК₅ (в отстой)</td>
</tr>
<tr>
<td>ХПК</td>
<td>> БПК</td>
</tr>
<tr>
<td>Общее количество окислов натрия</td>
<td>> нитратов</td>
</tr>
<tr>
<td>Общая жесткость</td>
<td>> временной жесткости</td>
</tr>
<tr>
<td>Общее количество цианидов</td>
<td>> цианидов без ферроцианидов</td>
</tr>
<tr>
<td>Общее количество фенолов</td>
<td>> моноугидратных фенолов</td>
</tr>
<tr>
<td>Общее количество фенолов</td>
<td>> полигидратных фенолов</td>
</tr>
<tr>
<td>Общее количество растворенного хрома</td>
<td>> соединений хрома</td>
</tr>
<tr>
<td>Нефтепродукты (всего)</td>
<td>> свободных нефтепродуктов</td>
</tr>
<tr>
<td>Нефтяные пленки</td>
<td>> свободных нефтепродуктов</td>
</tr>
<tr>
<td>Всего окислов натрия</td>
<td>= нитраты + нитриты</td>
</tr>
<tr>
<td>Общая жесткость</td>
<td>= Ca + Mg</td>
</tr>
<tr>
<td>Общее количество фенолов</td>
<td>= моноугидратные + полигидратные фенолы</td>
</tr>
</tbody>
</table>

10.1 ВВЕДЕНИЕ
Наличие достаточного количества качественных данных лежит в основе всех разделов гидрологии, от исследований до оценки водных ресурсов через широкий спектр оперативных применений. Значение слова "достаточный" может изменяться от одного применения к другому и здесь не обсуждается. В этой главе рассматриваются вопросы "хорошего качества" и доступа к данным, а также доступность данных широкому кругу пользователей.

10.1.1 Важность данных
Конечной целью сбора данных в гидрологии, от измерений осадков, записей уровня воды, измерений расхода до мониторинга подземных вод и отбора проб для определения качества воды, является предоставление комплекса данных, который может использоваться для принятия решений. Решения могут приниматься непосредственно исходя из необработанных данных, производных статистических данных или результатов многих этапов моделирования помимо стадии необработанных данных, но именно собранные данные лежат в основе принятия этих решений.

Необработанные данные (полевые книжки, ленты самописцев, графики или отчеты) должны сохраняться после их обработки. Некоторые ошибки, допущенные при регистрации и обработке данных, выявляются только после того, как результаты поступят пользователям. Также может понадобиться сверить данные с оригиналом или сделать перерасчет сомнительных значений. В отдельных случаях приходится повторять измерения, поскольку развитие и изменение технологий может потребовать обновления стандартов. Полученные данные в любом случае нуждаются в обработке, поэтому исходные данные обязательно должны сохраняться. Хранителям должно быть отделено от электронной базы данных и быть надежно изолировано.

Комплект данных представляет собой большую ценность, поскольку его сбор неизбежно требует больших затрат времени и денег. Поэтому само по себе управление этими данными является важной работой, и эта работа должна выполняться эффективно для получения максимальной отдачи от инвестиций. Хорошо организованный и хорошо управляемый архив должен объединять результаты труда, вложенного в сбор данных, и представлять собой источник высококачественных и надежных данных на десятки или сотни лет вперед. Архив, уровень которого невысок по причине отсутствия продуманности при его создании или плохого управления, может привести к гибели сбора дополнительных данных или моделированию и к последующему принятию неверных решений. Архив может стать избыточным в течение очень короткого времени. Кроме того, низкокачественные данные и базы данных приводят к нерациональным решениям в планировании и плохо спроектированным инженерным сооружениям.

Целостность данных также является важным вопросом. Часто ключом к пониманию успеха или ограничения работы во всех областях гидрологии является понимание качества данных, на которых основывается эта работа.

Конечно, масштаб управления данными зависит от масштаба деятельности: разработанный до деталей проект большого масштаба потребует более сложных методов управления и компьютерной памяти, чем маленький проект, в котором используется ограниченный набор переменных, собранных в течение короткого периода времени. На масштаб потребления данных влияют и другие факторы: объем данных, ограничения финансирования, ограниченные трудовые ресурсы и время работы персонала, которое может быть потрачено на архивирование, а также недостаточность фондов, необходимых для создания и использования больших систем управления данными. Способность персонала управлять данными также зависит от его навыков и профессионального опыта.

Несмотря на потенциальное разнообразие, обусловленное различными масштабами решаемых задач, существует ряд неотъемлемых аспектов, которые сопутствуют во всех гидрологических системах управления. Данный глава подробно описывает каждый из этих аспектов, уделяя особое внимание общему подходу, и иногда рассматривает реальные проблемы, возникающие при предельных значениях масштаба.
масштабов операции и уровня технологии, используемой для управления данными, о чем свидетельствует схема на рисунке I.10.1. Список в таблице I.10.1 представляет комплексы данных, существующих на различных стадиях процесса управления данными. Это обзор всего процесса обработки данных. Некоторые из аспектов этого процесса подробно обсуждаются в главе 9. В настоящей главе внимание сосредоточено на хранении данных, доступ к ним и их распространении, а также на демонстрации того, где они приводятся к виду, подходящему для процесса управления данными.

Полное описание рекомендаций по хранению информации и составлению каталогов климатологических данных представлено в публикации ВМО "Руководство по климатологической практике" (ВМО-№ 100). Несмотря на то что для хорошо организованного хранения гидрологических данных требуется несколько иной подход, это также описывалось в главной среде. Большое количество накоплений во многих странах климатологических и гидрологических данных затрудняет хранение всех исходных материалов. Однако можно делать копии первичных данных и хранить их на электронных носителях (например, выполнять электронное сканирование), занимающих мало места по сравнению с оригинальными материалами; это позволяет не хранить первичные материалы. Условия хранения информации на носителях любого вида должны максимально снижать вероятность их повреждения в результате чрезмерного нагревания, перепада температуры, высокой влажности, пыли, уничтожения насекомыми или другими вредителями, облучения или пожара.

По мере возможности следует иметь копии записей данных: одну — в главном информационном центре, другую — в региональном центре или на станции.

Различные типы вводимых данных, их обработка и контроль качества, применяемые к ним, описаны в главе 9. Вводимые данные могут появиться из рукописных записей наблюдателя, лент самописцев, регистрирующих устройств и рукописных листов или цифровых файлов, хранящих мгновенную информацию по измерениям расхода, включая сведения о речном створе, глубине и профиле скорости, часто связанные с описательной текстовой информацией.

<table>
<thead>
<tr>
<th>Роль</th>
<th>Инструменты</th>
<th>Процессы</th>
<th>Продукция</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оператор ввода данных</td>
<td>Инструменты ввода данных</td>
<td>Ввод</td>
<td>Необработанные данные</td>
</tr>
<tr>
<td>Гидролог</td>
<td>Инструменты обработки</td>
<td>Первая обработка</td>
<td>Обработанные данные</td>
</tr>
<tr>
<td>Управляющий архивом</td>
<td>Инструменты валидации</td>
<td>Валидация</td>
<td>База данных</td>
</tr>
<tr>
<td>Пользователь архивом</td>
<td>Инструменты анализа</td>
<td>Вторичная обработка</td>
<td>Архив метаданных</td>
</tr>
<tr>
<td></td>
<td>Инструменты запроса</td>
<td>Анализ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Инструмент отчетности</td>
<td>Интеграция</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Распространение</td>
<td></td>
</tr>
</tbody>
</table>

Рисунок I.10.1. Схема управления данными
В таблице I.10.1 обобщены процедуры, применяемые при управлении данными, от введения необработанных данных измерений до распространения обработанных данных, а также данных, используемых при выполнении этих процедур.

Таблица I.10.1. Процессы управления данными

<table>
<thead>
<tr>
<th>Процесс</th>
<th>Описание</th>
<th>Примеры типов данных, используемых в процессе получения и обработки данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ввод</td>
<td>Данные получают из источника или прибора с помощью ручной записи, регистрации данных, оцифровывания или другого метода и переводят в другой формат для хранения</td>
<td>Книга/лист наблюдателя (ежедневные показания или показания более мелких временных масштабов считаются вручную с водомерной рейки с дополнительными пометками, которые описывают необходимые детали)</td>
</tr>
<tr>
<td>Обработка необработанных данных</td>
<td>Данные, хранящиеся в ручном или цифровом виде, часто в обоих форматах</td>
<td>Файл с необработанными данными с автоматического регистрирующего устройства, соединенного с измерительным зондом, часто в двоичном формате/формате пользователя</td>
</tr>
<tr>
<td>Валидация</td>
<td>Необработанные данные проверяются на наличие ошибочных значений, и из них формируются правильные ряды необработанных данных</td>
<td>Ряды данных в базе данных на каждом этапе редактирования/валидации</td>
</tr>
<tr>
<td>Вторичная обработка</td>
<td>Этот этап включает в себя восполнение пропущенных данных по мере необходимости, преобразование первичных данных в данные с другой временной дискретностью (например, расчеты средних и общих рядов), создание кривых расходов на основе новых измерений расхода и перевод необработанных данных об уровне в данные о стоке или об объеме водохранилищ</td>
<td>Комплект данных для каждого нового ряда, созданный в процессе преобразования уравнений, отражающих связь между расходами и уровнями, полученные на основе измерений расхода и связанные с описанием текста и процессом принятия решения при формулировке калибровочного уравнения. Эти уравнения, как правило, со временем меняются, и необходимо поддерживать историю уравнений, описывающих связь между расходами и уровнями.</td>
</tr>
<tr>
<td>Защита и архивирование</td>
<td>Данные должны быть заархивированы таким образом, чтобы они были доступны и в то же время защищены, хорошо документированы и упорядочены</td>
<td>Метаданные, позволяющие быстро и легко получить доступ к комплектам данных, так же, как и полный индекс доступной информации</td>
</tr>
<tr>
<td>Интеграция с другими данными</td>
<td>Возможность отображать данные с другими источниками данных, например комплекты данных ГИС</td>
<td>Новые комплекты данных, такие как пространственное распространение осадков, полученные из данных с осадкомеров в точке или карт грунтовых вод, составленных на основе данных скважин</td>
</tr>
<tr>
<td>Распространение данных</td>
<td>Данные распределяются в установленном порядке и в форме, удобной для разработчиков моделей, лиц, принимающих решения, государственных органов и т.д.</td>
<td>Перечни данных, ежегодники и т.д. Возрастающая роль в распространении данных принадлежит веб-сайтам</td>
</tr>
</tbody>
</table>
Очевидно, что на каждой стадии процесса управления данными потенциально существует большое количество комплектов данных, и необходимо принимать решения о том, какие данные следует хранить, и как это сделать в эффективном гидрологическом архиве.

Ниже представлено описание хранения данных, их анализа и выработки информации, доступа к информации и распространения информации множеству пользователей.

После фаз обработки и контроля качества данных, описанных в главе 9, данные должны быть заархивированы в форме, которая свяжет с ними соответствующие виды анализа и инструменты для выработки вторичной продукции, а также инструменты по организации доступа к данным и их распространения.

10.2 ХРАНЕНИЕ И ИЗВЛЕЧЕНИЕ ДАННЫХ ИЗ АРХИВА

10.2.1 Хранение данных

Одним из важнейших вопросов в области управления гидрологическими данными является проблема принятия гидрологических решений, какие из многочисленных комплектов данных должны сохраняться. Процесс управления данными состоит из множества этапов (от записи до распространения), и каждый из них представляет один или несколько комплектов данных. Если хранить каждое возможное изменение этих данных, то в результате получится беспорядочный и громоздкий архив. Другой крайностью была бы ситуация, если гидрологический архив представлял собой статичный комплект обработанных и утвержденных данных, тогда было бы невозможно понять, каким образом эти данные были получены и изменены, или каковы потенциальные ограничения конечного комплекта. Например, обработанный комплект данных о речном стоке не обеспечивает информации о средствах измерения, процессе получения данных о расходе из данных об уровне воды, о том, были ли эти данные редактированы, и как проводилось редактирование. Поэтому необходимо решить, какой механизм хранения данных, находящийся между этими двумя крайностями, является наиболее подходящим.

Основным соображением при выборе уровня детальности архивируемых данных является их воспроизводимость. Для любого гидрологического проекта, каким бы большим он ни был, важно, чтобы каждый этап от получения необработанных данных до конечного комплекта обработанных данных был понят и в случае необходимости воспроизведен. Пользователи обработанных данных должны быть в состоянии быстро увидеть весь процесс обработки, через который прошли данные, и понять возможные ограничения. Это не означает, что любое изменение в комплекте данных должно быть сохранено для потомков, а скорее то, что необработанные комплекты должны храниться в памяти, и что изменения и расчеты, сделанные в процессе обработки и валидации, должны быть задокументированы и сохранены. Также важно, чтобы пользователи данных были в состоянии отличить исходные данные от тех, что были добавлены для заполнения пробелов, или от отредактированных данных.

Опять же, уровень, на котором осуществляется хранение данных, определяется рядом факторов, таких как имеющееся пространство для хранения, доступность фондов для хранения и документации и наличие персонала. Нахождение компромисса между законченностью архива и затраченными ресурсами неизбежно. В самом предельном случае, в большом и сложном гидрологическом проекте может использоваться система хранения данных, которая выполняет полностью автоматизированную проверку всех изменений комплектов данных, хранение дат и времени, фиксирует, когда были проведены изменения, идентифицирует внесшего их пользователя, а также позволяет произвести отмену выполненного редактирования для воспроизведения любой из предыдущих версий комплекта данных. Более простая система может содержать только необработанные данные и итоговый комплект данных с файлом записей, документирующим принятие решения и редактирование. Однако в обоих случаях процесс по существу один и тот же:

а) необработанные файлы данных должны быть сохранены вне зависимости от того, в каком они формате — жестком (книги измерителя, записи) или цифровом (необработанные файлы регистра или телеметрические данные);

б) все обработанные данные должны сопровождаться наглядными записями, описывающими источники их происхождения и связывающими их с комплектами данных, из которых они были получены;

в) важные этапы обработки данных должны быть сохранены, даже если обработанные данные являются лишь промежуточной стадией между необработанными данными и данными, предоставляемыми пользователям. Решение о важности определяется масштабом системы управления данными. Например, если ряд необработанных данных уровня воды переводится в ряд только месячных стоков, было бы благоразумно в дополнение к необработанным данным и итоговому месячному стоку сохранить хотя бы комплект данных уровня воды, прошедший процедуру валидации, и полученные данные суточного стока;

г) массивные изменения в частях каждого ряда должны документироваться для каждого из них.
например, необходимо отмечать даты записей значений уровня или расхода воды, рассчитанные (с помощью кривой расходов) по этим уровням, которые будут существовать как самостоятельный комплект данных;

e) изменения, внесенные в отдельные значения данных, например полученные в результате интерполяции отсутствующих значений данных или при редактировании индивидуальных значений, должны быть задокументированы для каждого измененного значения и сопровождаться комментарием, сообщающим пользователю, что ряда были изменены;

f) итоговый комплект данных в этом случае будет обладать полным каталогом того, что было отредактировано и почему, позволяя любому пользователю понять причины и методы изменения значений данных и воспроизвести этот комплект данных из необработанных данных.

10.2.2 Методы хранения

Одним из важнейших факторов при архивации данных цифровым образом является используемая база данных. Термин «база данных» часто используется неправильно, в области гидрологии и других областях он одновременно используется как по отношению к самой системе баз данных, так и по отношению к программному обеспечению для запросов данных из базы, показа и анализа данных.

Оба они являются важными аспектами любого архива и будут отдельно рассмотрены в этой главе.

База данных может быть описана просто как файловая система для электронных данных. Любой организованной совокупностью данных является, по сути, базой данных. От основных свойств таких совокупностей зависит, какая из баз данных наиболее подходит в конкретном случае в контексте принципиальных проблем управления данными, описанных в разделе 10.2.1.

10.2.2.1 Важные критерии для систем хранения данных

При разработке систем хранения данных должен быть рассмотрен ряд важных критериев, включающих:

a) безопасность — подразумевает управление доступом и административные права различных пользователей;

b) простота технического обслуживания;

c) затраты, включая начальные затраты и регулярные расходы на лицензионное программное обеспечение, техническое обслуживание и хранение;

d) простота процедуры запроса данных;

e) мощность существующих средств запроса данных;

f) простота разработки дополнительных средств запроса;

g) возможность подключения других источников данных или программного обеспечения отображения данных, например ГИС;

h) пригодность к использованию существующей инфраструктуры/требований в области информационных технологий (ИТ) и возможностей персонала;

i) система метаданных, которая предоставляет соответствующую информацию по данным, находящимся в базе данных;

j) возможность установить сетевой или удаленный доступ — связь с сетью и сетевыми серверами.

Конечно, каждый пример гидрометрического архива будет иметь разные уровни значимости для каждого из рассмотренных аспектов (в данном Руководстве показаны, скорее, крайности). Передовые требования к большой национальной сети, такие как автоматизированная загрузка данных в режиме реального времени, ссылки на сложные средства анализа и доступ множества пользователей из многочисленных расположенных организаций требуют солидной технической поддержки, подготовки пользователей и зачастую разработки инструментов для работы с данными на заказ. База данных должна надежно работать на машинах с широкими техническими возможностями и иметь техническую возможность автоматического сохранения резервных копий на магнитных носителях, находящихся в огнеупорном сейфе. База данных небольшого проекта может требовать управления одним гидрологом. В этом случае загрузка, редактирование и анализ данных должны быть простыми операциями, которыми можно быстро овладеть. Иногда может потребоваться, чтобы итоговая база данных была небольшой и пригодной для пересылки по электронной почте другим пользователям. Гидрометрический архив маленьких стран может содержать очень важные данные для социального, экологического и финансового будущего и при этом по необходимости поддерживаться весьма ограниченным бюджетом. Собрать данные дорого, и деньги, потраченные на чрезмерно детальные компьютерные системы, могут уменьшить задачу архива, заключающуюся в измерении и публикации гидрометрических данных хорошего качества. Однако база данных должна быть устойчивой: защищенной, простой в управлении при доступной инфраструктуре, в то же время обеспечивающей пользователя необходимыми инструментами.

Типы баз данных (здесь — электронных систем управления данными) могут быть разделены на следующие категории.
Простейшим типом базы данных может быть набор файлов в формате ASCII, содержащих данные, упорядоченные на ПК или сетевом диске. Отдельный файл может быть использован для хранения данных для конкретного временного ряда, возможно, в специальной директории для каждой станции. Преимущества такой системы заключаются в том, что она стоит не больше компьютера, на котором хранятся данные. Она очень проста в установке, пригодна для пользователей, которые обладают незначительными знаниями компьютера или даже для пользователей, у которых эти знания отсутствуют. Файлы могут быть легко найдены, а текстовый формат позволяет пользователю мгновенно читать их и хранить данные любого вида, которые позже могут быть прочитаны. Недостатки включают в себя очевидную ненадежность системы, ограничение по числу пользователей (ей может пользоваться лишь один пользователь), недостаток имеющихся средств для анализа и графического отображения данных и трудности в разработке средств для работы с данными. Однако многие организации по-прежнему поддерживают такие системы, они могут быть признаны подходящими для небольших компаний, позволяя хранить копии данных, архивированных в другом месте, когда анализ не требуется, при этом безопасность не является проблемой, а низкая стоимость технического обслуживания имеет первостепенное значение.

Форматы баз данных на заказ

Многие системы хранения данных, особенно те, которые были разработаны для подъездов компьютерных технологий в конце 1990-х годов, используют собственный формат для хранения данных. Часто это форматы сильного сжатия, позволяющие хранить большие объемы данных на маленьких дисковых пространствах, которые тогда были доступны. Кроме того, написание заказных методов доступа к данным, хранящимся в особых форматах, может позволить очень быстро извлекать и сохранять данные, поскольку в этом случае удастся избежать расходов, связанных с предоставлением прав общего доступа к таким данным. В дополнение к этим преимуществам систем на заказ, организация, которая создает свою собственную базу данных, также накапливает значительный объем знаний и в состоянии эффективно удовлетворять свои потребности как в хранении и просмотре данных, так и в средствах их анализа. К недостаткам можно отнести невозможность сочетаться или объединиться с другими доступными технологиями (особенность многих общих систем), а также стоимость технического обслуживания, поскольку платформы и операционные системы, на которых они работают, постоянно развиваются. Кроме того, есть риск, что организация, опирающаяся на детальные «домашние» знания, может столкнуться с отсутствием системы передачи знаний, или это знание каким-нибудь образом будет утеряно.

Системы управления реляционными базами данных

Системы управления реляционными базами данных (СУРБД) являются, как следует из их названия, чем-то большим, чем просто базами данных. Они, как правило, представляют собой особый формат файлов для хранения данных (сама база данных), а также включают в себя протоколы управления и программные средства доступа. Самые сложные из них могут включать в себя средства интегральных запросов, отчетов, графического отображения и публикации. Несколько хорошо известных СУРБД имеются на рынке программного обеспечения. Они широко используются во всем мире и, следовательно, прошли разнообразное тестирование и поддерживаются как разработчиками, так и пользователями. Опции, необходимые для разработки дополнительных средств, обычно уже включены в такие СУРБД. Безопасность, уровень технической поддержки, доступность средств запроса, цена и другие характеристики варьируются от системы к системе.

Специализированные гидрометрические системы баз данных

Описанные выше системы баз данных являются общими средствами для хранения данных. Они должны быть адаптированы пользователем для своих особых потребностей. Весьма вероятно, что потребности большинства гидрологов могут быть удовлетворены специализированной гидрометрической системой баз данных. Это по существу готовое программное обеспечение (хотя в некоторых случаях на установку этого программного обеспечения затрачиваются значительные усилия), которое может быть куплено или получено иным путем. Чаще всего такие базы данных содержат систему баз данных одного из вышеописанных типов, которая была адаптирована специально для работы с обычными типами гидрологических данных. Например, этот тип программного обеспечения может включать электронные таблицы баз данных и обычный порядок доступа, который особенно удобен для работы с гидрологическими типами данных и позволяет хранить необходимую описательную информацию, а наборы метаданных в нем уже созданы. Обычно система базы данных поставляется с программным обеспечением, которое позволяет управлять данными, редактировать и отображать графически, и это программное обеспечение гораздо легче использовать, чем саму базу данных. К тому же, многие средства управления базами данных...
расширенные и включают в себя средства анализа, например средства для получения кривых продолжительности стока из данных о расходах и статистические средства для выполнения настройки распределения пиков наводнений. В качестве примера специализированного программного обеспечения можно привести такие системы обработки и анализа данных, как HYDATA, HYSYS, TIDEDA, HYDSYS и WISKI.

Плюсы и минусы этих систем попадают в категории, упомянутые в разделе 10.2.1. Общедоступные системы обычно разнятся в масштабах. Более маленькие системы проще для установки и эксплуатации, они дешевле при покупке и в техническом обслуживании. Более крупные системы дороже, однако обладают большей функциональностью, часто построены вокруг базы данных большего масштаба с повышенной безопасностью, хотя это часто может быть связано со стоимостью лицензий для программного обеспечения. Таким образом, выбор системы зависит от потребностей пользователя и его возможностей по приобретению и техническому обслуживанию системы баз данных.

10.2.2.6 Навыки управления базой данных
Базы данных могут управляться одним человеком или группой людей, но проводимые процессы обычно требуют конкретных навыков, которые определяют роль человека, вовлеченного в процесс. Некоторые из этих навыков перечислены в таблице I.10.2.

10.2.2.7 Резюме
Существует много типов систем хранения цифровых данных. В то время как большая часть гидрологов будет удовлетворена одной из имеющихся гидрологических баз данных, некоторые продвинутые пользователи могут требовать конкретных навыков, которые определяют роль человека, вовлеченного в процесс. Некоторые из этих навыков перечислены в таблице I.10.2.

Таблица I.10.2. Навыки, необходимые для работы с базами данных

<table>
<thead>
<tr>
<th>Роль</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оператор ввода данных</td>
<td>Необходимы неглубокие знания в области гидрологии и информационных технологий, однако часто данные загружаются из регистрирующих устройств или извлекаются из файлов других форматов</td>
</tr>
<tr>
<td>Гидролог</td>
<td>Работа по валидации данных требует наличия углубленных знаний в области гидрологии и знания локальных гидрологических режимов. Для анализа данных необходимы глубокие знания в области гидрологии</td>
</tr>
<tr>
<td>Управляющий архивом</td>
<td>Общее управление архивом и распространение данных требуют наличия знаний в области гидрологии. Интегрирование архивных данных в другие процессы требует как гидрологических знаний, так и навыков в области информационных технологий</td>
</tr>
</tbody>
</table>

10.2.3 Типы архивируемых данных и информации
В этом разделе наиболее подробно описаны те виды информации, которые должны храниться в гидрологическом арhive. Возможно, лучший способ рассмотреть, как должен быть организован архив, — это представить себя подходящим к архиву без каких-либо предварительных знаний о meteorологических условиях, размерах рек, характеристик водосбора, сетях водомерных постов, использовании воды внутри водосборов или объемах данных. Должна существовать возможность быстро получить представление о всем содержании архива, потом быстро извлечь требуемые данные. Пользователи архивом должны иметь возможность в полной мере оценить все изменения, которые были внесены в данные, и быстро извлечь информацию о доступности данных, сводных статистических показателях и полных комплектах данных. Это позволит пользователям начать работу с данными на любом этапе управления ими с наименьшими усилиями. К тому же, архивная система должна сделать документирование работы простым и эффективным процессом. Производство дальнейших комплектов данных для ввода в модели, для их дальнейшей обработки, для передачи отдельным пользователям и для создания публикаций (например, ежегодники) также должно быть для управляющего архивом простым и быстрым процессом.

10.2.3.1 Метаданные архива
При рассмотрении гидрологического архива первый уровень данных, увиденный пользователем, должен представлять собой сведения о самом архиве. Такие сведения называются метаданными. Это информация
об архиве, которая должна публиковаться управляющим данными в качестве меры распространения информации об архиве. Эти данные могут принимать форму, описанную в таблице I.10.3.

Архивированные метаданные могут быть предоставлены сложной компьютеризированной системой, вероятно с ГИС-совместимым интерфейсом, с опцией разрешения доступа к данным и автоматически обновляемыми перечнями доступности данных, через которые пользователь может просматривать страницы с данными. Или это может быть просто папка бумаг, находящихся под ответственностью управляющего архивом. В последнем случае папка должна регулярно обновляться по мере добавления новых станций и новых данных.

10.2.3.2 Станционные метаданные

Когда пользователи архива хорошо ознакомятся с фондами данных, им понадобится дальнейшая информация. Данные, описывающие станцию, важны для характеристики среды, в которой работает станция. Эти данные также могут представлять собой общий ресурс для пользователей данных, например для понимания назначения используемого на станции измерительного оборудования, морфологического окружения станции, и дают возможность руководящему персоналу станции хранить информацию о местоположении станции, организации доступа к данным, личные данные и адрес действующего персонала. Большая часть данных, указанных в таблице I.10.4, может относиться к гидрологическим станциям, водомерным постам или другим пунктам измерений, хотя некоторые позиции в этом списке характерны только для гидрологических речных измерительных станций.

Краткая информация о статусе гидрологических систем метаданных приведена в отчете № 31 Глобального центра данных по стоку (Maurer, 2004).

Дополнительная информация по стандартам метаданных баз данных доступна на следующих Интернет сайтах:

- USGS — Federal Geographic Data Committee’s “Content Standard for Digital Geospatial Metadata: http://www.fgdc.gov/metadata;
- Dublin Core Metadata Element Set, Version 1.1 http://dublincore.org/documents/dces/;

Некоторое количество примеров метаданных для гидрологических систем находится в свободном доступе на сайтах:

- глобального уровня: http://www.watsys.unh.edu/metadata/;
- национального уровня: http://www.epa.gov/Region8/gis/data/r8_yl.html;

Таблица I.10.3. Описания данных, хранящихся в архиве

<table>
<thead>
<tr>
<th>Тип данных</th>
<th>Описание</th>
<th>Примеры</th>
</tr>
</thead>
<tbody>
<tr>
<td>Архивное описание</td>
<td>Краткое текстовое описание задач и целей проекта мониторинга данных</td>
<td>Название и описание проекта, дата начала проекта/создания архива, цели проекта, краткий обзор способов распространения</td>
</tr>
<tr>
<td>Географические карты</td>
<td>Карты, предоставляющие физическую среду для архивных данных</td>
<td>Границы водосбора, расположение гидрометрической/метеорологической станции и расположение других станций по измерению данных, речная сеть, озера и другие важные элементы</td>
</tr>
<tr>
<td>Перечни данных</td>
<td>Списки комплектов данных и их доступность</td>
<td>Перечни данных по их типу, хранящиеся в базе данных, ссылки на места измерений, а также имеющиеся дополнительные данные, например производные пространственные данные и данные ГИС из других источников, и, кроме того, перечни для каждого комплекта данных о доступности данных с течением времени в соответствующем масштабе</td>
</tr>
</tbody>
</table>
10.2.3.3 Данные временного ряда

Большую часть данных, используемых в гидрологии, представляют собой данные временного ряда, измерения переменной в фиксированном месте в течение времени, включая осадки, речной сток, уровень воды, объем водохранилища, уровень воды в скважине, влажность почвы и pH. На отдельной станции (или в географической точке) часто имеется несколько измеренных временных рядов данных и каждый из них может иметь различные характеристики. Каждая станция должна хранить резюме всех временных рядов, измеренных в этом месте (пример истории комплекта данных приведен в таблице I.10.4), а атрибуты временных рядов должны быть отмечены для каждого из них (таблица I.10.5).

Таблица I.10.4. Примеры метаданных станции

<table>
<thead>
<tr>
<th>Метаданные</th>
<th>Описание</th>
<th>Примеры</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификация</td>
<td>Текущая идентификационная информация для станции и обзор целей, для достижения которых используются станция</td>
<td>Название(и) станции(й), номер(а) станции(й), названия водосбора, название водоема, название гидрометрической площади, высота, площадь водосбора, главная цель, второстепенная цель, метод первичного измерения (например, тип водослива), метод измерения высокого потока, общее описание станции</td>
</tr>
<tr>
<td>Местоположение</td>
<td>Информация о географическом положении станции</td>
<td>Широта/долгота (или положение в местной системе координат), ближайший город/ориентир на местности, эталонное местоположение и высота, информация о собственнике земли, маршрут, доступность, оптимальное время доступа, информация о доступности станции в период наводнения и т.д.</td>
</tr>
<tr>
<td>Оператор</td>
<td>Информация об организации, управляющей станцией, если она управляется другой организацией, например региональной организацией</td>
<td>Имя оператора, контактная информация, ответственность и т.д.</td>
</tr>
<tr>
<td>Наблюдатель</td>
<td>Информация о сотрудниках, проводящих измерения на станции</td>
<td>Имя наблюдателя, контактная информация, ответственность, дата начала, частота посещений, метод предоставления информации и интервал</td>
</tr>
<tr>
<td>История станции</td>
<td>Описание истории станции, указывающее на все изменения, которые могли повлиять на измеренные данные</td>
<td>Дата открытия, дата закрытия (для закрытых станций), история оператора, история оборудования, история кулевого уровня</td>
</tr>
<tr>
<td>Оборудование/телеметрия</td>
<td>Информация о любых регистрирующих устройствах или автоматических телеметрических системах, которые используются на станции</td>
<td>Название системы, производитель, цель, ссылки на соответствующую литературу, дата установки, высоты антенн и т.д., интервал предоставления информации и частота, сообщаемые параметры, дополнительная описательная информация</td>
</tr>
<tr>
<td>Статистика</td>
<td>Сводные статистические данные станции</td>
<td>Статистика, значения, период, к которому относится статистика, рассчитанные данные и т.д</td>
</tr>
<tr>
<td>Графика</td>
<td>Изображения станции и окружающей ее территории</td>
<td>Изображение, описание, дата, ссылки на файлы цифровых снимков и т.д.</td>
</tr>
<tr>
<td>История комплектов данных</td>
<td>Информация о комплектах данных, полученных для станции</td>
<td>Измеренные параметры, полученные ряды, путь течения для измеренных на станции данных, сводки о доступности данных</td>
</tr>
<tr>
<td>История измерений и используемых связей между расходами и уровнями</td>
<td>Описательная информация об измерениях мгновенного расхода и разработке уравнений ранжирования — фактические гидрометрические данные должны храниться в базе данных</td>
<td>Описание участка(ов) реки, использованных при сборе, история изменений секций через движение секций, зрения и т.д., чертежи секций, описание вопросов</td>
</tr>
</tbody>
</table>
Данные в реальном масштабе времени

Для телеметрических данных, собранных тем или иным способом и необходимых для использования в режиме реального времени, например для прогнозирования паводков, эксплуатации водохранилищ или мониторинга меженного стока для экологических целей, может понадобиться архивирование и доступ данных, хранящихся в других системах (помимо тех, которые собраны для обычного мониторинга или долгосрочной оценки водных ресурсов). Такие телеметрические данные обычно должны пройти через довольно простой процесс валидации перед архивированием для последующего ввода в модели, работающие в режиме реального времени. В этом случае процедура валидации может быть весьма простой (например, может быть выполнена проверка того, что каждое входящее значение находится внутри установленных пределов для станции, или что изменение относительно предыдущих значений не слишком большое). Поэтому данные по 15-минутным осадкам должны всегда быть положительным числом, но меньшим, чем наивысшие зарегистрированные 15-минутные осадки для региона плос, может быть, 10 процентов. Данные по уровню реки также должны быть больше, чем уровень русла или верх гребня водохранилища, и может быть установлено подходящее максимальное значение. В дополнение, из анализа предыдущих наиболее значительных наводнений должна быть установлена характерная скорость подъема для 15-минутного интервала. Если данные выходят за эти пределы, они обычно все равно должны быть сохранены в необработанном файле данных, но отмечены «флажком» как подозрительные и сопровождены предупредительным сообщением для операторов модели.

В случае обнаружения подозрительных данных может быть использовано несколько перечисленных ниже вариантов для любой модели прогнозирования в режиме реального времени или модели поддержки принятия решений:

a) подозрительные данные могут быть приняты, и модель может работать в нормальном режиме, хотя это редко является разумным решением;
b) модель может работать в обычном режиме, а подозрительные данные отмечаются как отсутствующие (то есть предполагая, что дальнейших осадков в течение рассматриваемого периода не было, или отсутствовали данные о фактическом уровне или расходе, по которым можно тестировать предсказанный сток);
c) отсутствующие данные могут быть заменены какой-либо формой резервных данных. Например, отсутствующие данные об уровне воды в реке могут быть заданы путем экстраполяции
Предыдущих значений, а отсутствующие данные по осадкам могут быть заполнены данными измерений на других регистрирующих устройствах или средними сезонными значениями.

Что делать с отсутствующими данными зависит от ситуации и требований к моделированию. Тема моделирования рассмотрена в томе II, глава 6.

10.2.3.5 Пространственные данные

Почти все данные, обсуждавшиеся выше, представляют собой либо описательные метаданные, либо временные ряды измеренных характеристик. Ниже обсуждается следующий тип данных. Итак, пространственные данные — это данные, которые обладают существенной географической составляющей. Примеры включают в себя карты мест расположения водомерных постов, цифровые карты возвышений и изогипсы осадков. Пространственные данные могут быть отображены при помощи ГИС, и они часто используются для интеграции гидрологических и пространственных комплектов данных.

Географические особенности представлены в рамках ГИС в различных формах (рисунок I.10.2):

а) многоугольник — данные существуют как формы площадей (например, страны или бассейны);

Рисунок I.10.2. Примеры, начиная с верхнего левого фото и по часовой стрелке: сетки (дождь), линии (реки), точки (гидрометрические станции) и полигон (водосбор) данных
b) линия — данные появляются как линии с соответствующими атрибутами (например, реки);
c) точка — данные существуют как отдельные точки (например, водомерные посты или осадкомеры);
d) сетка — область разделена на ячейки сетки и атрибуты этой ячейки (например, осадки) хранятся вместе с другими атрибутами.

Характеристики этих географических особенностей называются атрибутами, например каждый многоугольник геологического покрытия может содержать такие атрибуты, как состав пород или тип водоносного горизонта.

Для целей настоящего обсуждения пространственные гидрологические данные могут быть разделены на две простые категории:

Физические карты

Физические карты являются бесценным ресурсом в гидрологических исследованиях и до сих пор составляют главный источник пространственных данных во многих странах. Они могут включать в себя карты для специалистов, например показывающие границы определенного типа почвы, геологические характеристики или осадки, или это могут быть национальные карты, показывающие разнообразные сведения, такие как города, дороги, контуры и реки. Физические карты должны рассматриваться как центральная часть гидрологического архива. Они являются полезной отправной точкой для справок, предоставляя ценную информацию относительно условий работы реальных измерительных станций и особенностей получения метеорологических данных. Физические карты должны храниться соответствующим образом, в идеале — в специальных ящиках для карт, на полках или стеллажах. Архив карт должен быть документально оформлен в виде набора многоугольников. Как и в случае с любым другим процессом управления данными, происхождение данных, а также любые вносимые изменения должны быть тщательно задокументированы, чтобы пользователи итоговых данных имели представление об их происхождении.

Если физические карты созданы в архиве (например, карты стока, построенные по данным наблюдений на водомерных постах), сведения о назначении таких карт и необходимых подробностях должны быть опубликованы в соответствующем месте. Таким образом могут быть собраны гидрологические данные или материалы, издаваемые национальными или региональными агентствами по картографии.

Цифровые данные

Примерно в последние 10 лет была отмечена тенденция перехода от физических карт к цифровым. Развитие технологий позволило оцифровывать карты и использовать их в ГИС. В этих системах гораздо проще работать с картами и интегрировать картографические материалы. Кроме того, из них проще извлекать информацию и распространять изменения.

Многие цифровые карты могут быть простыми оцифрованными версиями обычных физических карт. Например, контуры на нормальной карте общего пользования могут быть оцифрованы до линейного покрытия, или карта типов почвы может быть оцифрована в виде набора многоугольников. Как и в случае с любым другим процессом управления данными, происхождение данных, а также любые вносимые изменения должно быть тщательно задокументировано, чтобы пользователи итоговых данных имели представление об их происхождении.

Кроме того, цифровые карты можно создавать. Например, сетка данных об осадках может быть создана по точечным источникам измерений, выполненным дождемерами, используя различные методы обработки. Контурные линии, если их точно оцифровать, могут быть экстраполированы для создания цифровой модели сети возвышенностей топографических высот. Используя контуры или цифровую модель возвышенностей, можно самостоятельно вручную добавить линейный объект, например границы водоема для данного водомерного поста. Если карты, полученные таким путем, хранятся как часть гидрологического архива, следует соблюдать те же меры предосторожности в отношении воспроизводимости, которые были описаны в разделе 10.2.1. Каждая полученная карта должна сопровождаться архивированием метаданных, описывающих процесс ее создания. Любой созданный значимый и полезный промежуточный комплект данных должен храниться соответствующим образом.

10.2.3.6 Факторы, которые необходимо учитывать при управлении данными

При управлении гидрологическими данными и информацией важно включать в этот процесс следующие процедуры:
ГЛАВА 10. ХРАНЕНИЕ, ДОСТУП И РАСПРОСТРАНЕНИЕ ДАННЫХ

10.2.3.7 Контроль за потоком информации

О важности контроля за рядами поступающих данных уже было рассказано в связи с операцией ввода данных. Не менее важно и определение статуса всех комплектов данных на разных стадиях их проверки и обновления. Это особенно справедливо, когда проверяются сомнительные данные, и пока ожидаются результаты из гидрологического центра от лиц, отвечающих за контроль качества.

Первоначально весь процесс контроля может проводиться вручную, но в дальнейшем некоторые функции могут быть автоматизированы и стать частью системы компьютерной обработки данных.

Автоматизация позволяет выполнять стандартный контроль над следующими параметрами: состояние архива данных, результаты проверки, физическое размещение данных в системе, например номера лент или дисков и название комплектов данных. Такой контроль очень важен, когда обрабатывается большое количество информации.

Персонал, занимающийся контролем данных, отвечает за следующие виды деятельности:

a) регистрация поступающих данных и направление их в соответствующие системы ввода информации;
b) мониторинг и запись состояния входных данных, а затем их передача для первичной проверки и обработки;
c) направление результатов проверки гидрологическому персоналу и получение отредактированных данных;
d) повторение шагов а) — с) до тех пор, пока все данные не будут приняты для обновления базы данных;
e) передача ежемесячных и ежегодных сводок соответствующим службам и лицам.

Характер решаемых задач в целом зависит от того, насколько данная информация будет доступна отдельным потребителям для редактирования. В системах управляемого режима потребители сами отвечают за контроль качества, и ответственность центра снижается. Однако в этом случае потребители должны каким-либо образом показать, что качество данных проверено и ряды готовы для дальнейшей обработки.

10.2.3.8 Процедуры обновления данных

Большая часть заархивированных гидрологических баз данных обновляется, по крайней мере, на двух этапах. Эти этапы показаны на рисунке 1.9.2. Первый этап — это ежемесячное обновление, соответствующее стандартному отчетному периоду. Степень деления первых четырех этапов на отдельные компьютерные процедуры зависит от потребителя и физических ресурсов системы. Если большинство файлов хранится на ленте, то выполнить все ежемесячные процедуры, используя одну программу, просто невозможно, поскольку требуется слишком много устройств для считывания информации с ленты. Можно вообще не рассчитывать производные величины, например сток или потенциальное суммарное испарение, до тех пор, пока вся базовая информация не будет проверена вручную.

Для конечного потребителя основными результатами после первого этапа обновления данных являются итоговые месячные сводки. Для управления базой данных основные результаты — это исправленные рабочие файлы с годовыми значениями. Если на первом этапе данные сводят только в месячные блоки, может понадобиться сохранить также неполные файлы данных. Это нужно при использовании данных с самописцев, совместимых с компьютером, где носители информации меняются через неодинаковые промежутки времени. Например, при обработке месяца 1 на записывающем устройстве самописца уже могут находиться данные за несколько дней месяца 2. В этом случае данные месяца 2 хранятся во временных файлах, пока не поступят дополнительные данные за этот месяц и месяц 3. Цикл повторяется и создается полный файл для данных месяца 2 и неполный для месяца 3. Эта проблема редко встречается при автоматизированных наблюдениях или на станциях, оборудованных системой телеметрической связи. Если совместимые с компьютером носители информации нуждаются в предварительной обработке, существует возможность раздробления данных, а затем их соединения за целый месяц при предварительной обработке на микрокомпьютере, предшествующей отправке данных на центральную ЭВМ.

После проведения проверки на достоверность и любой первичной обработки (глава 9), месячные пакеты данных добавляются в файлы с текущими годовыми значениями. Данные, не прошедшие контроль качества, должны проверяться вручную, и в случае ошибок выполняют действия, указанные на рисунке 1.9.2.
Для того чтобы обеспечить соответствующий круговорот данных, необходимо начинать обработку данных каждого месяца не позднее 10–15 числа следующего месяца. Если обработка не начинается к этому времени, существует опасность, что в этом случае работы с данными — ввод, обработка и обновление файлов годовых значений — окажется невыполненной.

Цель ежегодного обновления данных заключается в добавлении годовых рабочих файлов в базу данных с многолетними значениями. Этот процесс вызывает также изменение статуса данных из рабочих материалов в статус справочных гидрологических данных, прошедших контроль качества. Таким образом, необходимо обеспечить разрешение спорных вопросов до ежегодного обновления. Конечные данные после ежегодной обработки можно использовать для гидрологических ежегодников.

10.2.3.9 Сжатие и точность данных

Важной операцией обработки данных является их сжатие для оптимального использования места хранения. Методика сжатия рассмотрена в работе Guidelines for Computerized Data Processing in Operational Hydrology and Land and Water Management (Руководящие указания для компьютерной обработки данных в оперативной гидрологии, земельном и водном хозяйстве) (WMO-No. 634). Тем не менее, технологии сжатия данных обычно зависят от типа используемого компьютера. В гидрологических системах баз данных используются разнообразные методы сжатия информации, например:

a) при хранении используются целые числа, а при выводе они преобразуются в нужную шкалу. Например, осадки за сутки составляют 0,1 мм, их хранят в десятках м.м, обозначая целым числом, и при выводе делит это число на 10. Число, которое запоминается, занимает в два раза меньше места. Обычно целое число использует 2 байта памяти по сравнению с 4-мя байтами, которые нужны для хранения истиного десятичного значения;

b) использование неформатных (двоичных) файлов предпочтительней обычных файлов в кодах ASCII. Кроме того, что бинарные (двоичные) файлы занимают меньше места, они быстрее загружаются и быстрее выводятся;

c) использование счетчиков для повторяющихся одинаковых значений. Так, 10-дневный период без осадков не нужно записывать, как ряд из 10 нулей, а следует использовать показатель повторяемости 10 значений, равных нулю;

d) более сложная версия предшествующего метода заключается в полном удалении избыточных данных. Избыточные данные образуются в результате перезаписи гидрологических явлений некоторыми типами полевых приборов, в частности самописцами с фиксированным интервалом. Например, в последовательности 40, 50, 60 совершенно ясно, что центральное значение можно получить интерполяцией соседних. Таким образом, с использованием специального программного обеспечения можно сканировать данные, удаляя все значения, которые можно получить допустимой интерполяцией. Этот метод значительно сокращает потребности в месте для хранения информации, но приводит к незначительным потерям в информативности данных. В Новой Зеландии использованы системы данных, зависящих от времени (TIDEDA) (компонент ГОМС G06.2.01), дало очень большую экономию места хранения — в 2–12 раз; e) используют большие относительных значений данных, чем абсолютных. Например, уровень воды в скважине может даваться в абсолютных величинах, или, что является более экономичным, в величинах относительно каких-то местных отметок или относительно среднего уровня воды. Можно хранить только отклонение от предшествующего значения, тогда числа будут меньше, и потребуется соответственно меньше места. Необходимо сбалансировать применяемые уровни сжатия данных. Большая эффективность хранения достигается при сжатии данных на этапе ввода и расширении при выводе. Правильный уровень сжатия должен отражать относительное ограничение места хранения и возможности программного обеспечения на каждой установке. Что касается точности хранимых данных, то любая гидрологическая информация должна иметь точность до трех знаков.

Поскольку во многих гидрологических базах данных, информация хранится с точностью до 3 или 4-х цифр. Таким образом, если рассчитанный сток равен 234,56 м³ с⁻¹, это значение можно хранить как 235. Такая практика применяется также с целью экономии места.

10.2.3.10 Физическая организация файла

Последовательная организация файла является простой и может быть использована во всех формах хранения, она годится также для временных рядов, которые чаще всего вводятся и выводятся последовательно. Индексированные последовательные файлы очень привлекательны для хранения большинства гидрологических данных, так как характер данных сохраняется на носителе, но имеется возможность непосредственного доступа к отдельным или группам данных.

Произвольный доступ, равно как и последовательно индексированный, относится только к файлам на дисках или дисках, но требует более высокой системы
организации хранения в виде томов. Отдельные данные могут иметь прямой и наиболее быстрый доступ, если они имеют произвольный доступ. Благодаря перекрестным ссылкам (указателям), данные в файлах с произвольным доступом можно использовать эффективно и разнообразно.

Если база гидрологических данных разработана и поддерживает работу с данными в онлайновом (интерактивном) режиме, файлы должны находиться на дисках, и тогда возможен доступ к файлам как в последовательно индексированном, так и в произвольном режиме. В самом деле, их использование важно для получения быстрого ответа при работе с большими массивами информации.

Когда доступ к данным в онлайновом режиме не является приоритетным, имеет смысл хранить ряды данных с одной переменной, например уровни воды или осадки в последовательных файлах, т. к. с них выдают временную последовательность данных. Для файлов с рядами нескольких переменных последовательно индексированная и свободная организация доступа имеет ряд преимуществ.

Если переменная измерялась только на нескольких станциях, нужно найти необходимые значения и поместить их в последовательный файл. В некоторых файлах свободного доступа можно хранить указатель для каждой переменной, и этот указатель показывает размещение данных, полученных на соседней станции, которые содержат ту же переменную. В этом случае легко получить необходимые данные. Такой метод лучше всего подходит для данных о качестве воды, где наблюдаемые переменные сильно варьируются между станциями и в разные периоды.

На магнитной ленте данные хранятся в самом обычном формате для больших баз данных — последовательном. Однако, когда файлы передаются с ленты на диски, может использоваться любой тип доступа из рассмотренных выше. Какой бы метод доступа не использовался, все крупные файлы базы данных рекомендуется хранить в неформатированном (двоичном) виде.

Некоторые системы базы данных используют целый набор методов для максимальной эффективности хранения и вывода данных. Это достигается путем хранения больших групп последовательных данных в единичных записях файлов со свободным или последовательно индексированным доступом. Используя этот метод, данные ежесуточных или ежечасных наблюдений по одной станции в течение года могут храниться в виде одной физической записи в файле свободного или последовательно индексированного доступа. Чтобы получить данные за определенный месяц, запись по станции за конкретный год может быть выведена прямо на диск. Эта запись затем передается в буферную память, из которой можно быстро вывести данные за нужный месяц. Следует упомянуть и применение систем управления базами данных (СУБД). Эти системы опираются на использование файлов свободного доступа. Их рекомендуется использовать с осторожностью, если не известны и не зафиксированы точная дата ввода и формат вывода, и если нет достаточного программного обеспечения. Рекомендуется эволюционный подход к использованию СУБД.

В настоящее время многие службы оценивают использование систем баз данных СУБРД для совместного хранения данных и другой информации. Следует внимательно следить за достижениями в этой области.

10.2.3.11 Логическая организация файла

Существуют два аспекта логической организации данных: крупные группировки, которые определяют количество файлов и наборы значений переменных, входящих в записи каждого файла.

Полная гидрологическая база данных будет содержать следующие группы файлов:

a) системные справочные файлы, которые включают списки кодов (файл-словарь), используемые для проверки ввода данных, для кодирования данных и раскодирования при выводе. Если используется вид пространственного кодирования, то нужны гидрологические и/или географические справочные файлы;

b) файлы описания станций, начиная с простых файлов, дающих номер и название станции, вид местонахождение и оборудование, до подробных файлов, содержащих, например, полные данные о скважинах или колодцах;

c) тарировочные файлы, содержащие подробную историческую информацию, необходимую для расчетов производных переменных, обычно на основе информации, получаемой от станции к станции. Примерами являются кривые расходов для гидрометрических станций и тарировочные коэффициенты для климатологических и фиксирующих качество воды датчиков. Некоторые данные не относятся к станциям, например тарировочные коэффициенты вертушек и справочные таблицы теоретически возможных значений солнечной радиации и времени стояния солнца;

d) файлы временных рядов, содержащие ряды наблюдений по гидрологическим станциям. Они могут содержать ряды с одной или несколькими переменными, измеренными через регулярные и нерегулярные промежутки времени.
Связь этих разных групп файлов показана на рисунке I.10.3.

С организационной точки зрения можно объединить всю информацию из пунктов b) и c) в общие файлы или разделить каждый вид на файлы с современной и исторической информацией. Это дает преимущество для использования стандартного формата и размера в файлах, содержащих текущую информацию. Решение в большей степени зависит от объема описательной информации, которая содержится в файлах компьютера, по сравнению с имеющейся информацией, не занесенной в компьютер.

Полезно рассмотреть другие варианты хранения временных данных различного вида в одном и том же физическом файле.

На самом простом уровне каждая станция имеет свои файлы, в которых данные находятся в определенной временной последовательности. Этот способ пригоден для небольших объемов данных или для хранения на ленте архивной информации. Однако, поскольку гидрологическая сеть может иметь несколько тысяч станций различного типа, эта простая система представляет значительные трудности, когда приходится иметь дело с очень большим числом файлов.

На более высоком уровне, который применяется в большинстве гидрологических систем, используются файлы, которые содержат информацию по многим станциям, но каждый файл несет информацию определенного вида. Это могут быть гидрологические данные, например ежесуточные расходы, или смешанные временные ряды, например несколько переменных за определенные промежутки времени. В первом случае, файл ежесуточных значений расхода, например, будет содержать ежесуточные расходы по всей гидрологической сети. Этот файл, при последовательной организации, строится по порядку станций, а внутри каждой станции — по времени. Во втором случае, в файл включаются все ежесуточные данные независимо от вида, и файл строится по типу и номеру станции. Оба примера используются в Системе хранения и поиска данных о воде WATSTORE (Kilpatrick, 1981), в которую входят пять больших файлов. В первом файле находятся данные о главной станции (описание), три файла сгруппированы по типу гидрологической информации (качество воды, экстремальные значения стока, учет подземных вод), а последний, в котором собраны временные ряды, является файлом суточных значений. Он содержит мгновенные измерения через определенные интервалы времени, средние суточные значения и такие статистические данные, как максимальное и минимальное суточное значение. В 1981 году в этом файле находилось 190 миллионов суточных значений таких переменных, как расходы, уровни, наполнение водохранилищ, температура воды, удельная проводимость, концентрация наносов, расход наносов и уровень подземных вод.

На самом высоком уровне интеграции (отличном от используемого в СУБД) находятся системы, которые преобразуют все виды данных временных рядов в один общий формат и хранят все эти данные в одном физическом файле. Такой подход, используемый в Новозеландской системе TIDEDA, значительно упрощает разработку программного обеспечения для задач

![Рисунок I.10.3. Взаимосвязь между файлами гидрометрических станций](image_url)
по управлению и поиску информации, потому что формат ее хранения является стандартным. Таким образом системами хранения и обработки данных, являющимся также компонентами ГОСМС, являются система Соединенного Королевства HYDATA и Австралии — HYDSYS. Подробности по хранению и обработке данных в этих системах можно найти в Guidelines for Computerized Data Processing in Operational Hydrology and Land and Water Management (Руководящие указания для компьютерной обработки данных в оперативной гидродинамике, земельном и водном хозяйстве) (WMO-No. 634).

10.3 ИЗВЛЕЧЕНИЕ ДАННЫХ

10.3.1 Средства анализа данных

Средства анализа данных могут быть интегральной системой, работающей с той же базой данных, или отдельными ручными или компьютерными средствами для выполнения задач, требуемых для создания отчетности (см. таблицу I.10.6).

<table>
<thead>
<tr>
<th>Инструмент</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Инструменты ввода данных</td>
<td>Ввод данных вручную, аппаратное и программное обеспечение для загруженных с регистраторов данных, переформатирование программного обеспечения, стандартные инструменты составления электронных таблиц для форматирования и хранения данных, автоматические средства управления данными в реальном времени</td>
</tr>
<tr>
<td>Инструменты обработки</td>
<td>Первоначальная обработка: аппаратное и программное обеспечение, например для цифровых диаграмм; вторичная обработка: средства программного обеспечения, например для перевода уровня воды в потоки</td>
</tr>
<tr>
<td>Инструменты валидации</td>
<td>Программное обеспечение для просмотра графиков и редактирования данных, программное обеспечение для построения совмещённых графиков, гидрографа, отражающего минимумы и максимумы и т. д</td>
</tr>
<tr>
<td>Инструменты анализа</td>
<td>Программное обеспечение (включая электронные таблицы) для получения статистических данных, таких как кривые обеспеченности речного стока</td>
</tr>
<tr>
<td>Инструменты запроса</td>
<td>Средства программного обеспечения для получения специальных значений данных или статистики из архива</td>
</tr>
<tr>
<td>Инструменты отчетности</td>
<td>Средства программного обеспечения для создания отчетов/производства данных для их распространения из архива</td>
</tr>
</tbody>
</table>

При разработке средств извлечения данных из архива необходимо определить нужды и требования пользователей, чтобы разработанные средства отвечали этим требованиям. Следует учитывать требования к данным для:

a) отдельных рядов (например, суточные или месячные данные о стоке за определенный период);

b) множественных рядов (например, данные о стоке для группы станций или совпадающие данные об осадках и стоке);

c) отдельных значений, выбранных из нескольких рядов, используемых для моделирования или отображения в ГИС (например, годовой пик расхода для данного створа или средние годовые осадки).

Необходимо, чтобы данные и информация могли бы быть получены из базы данных в различных форматах в зависимости от потребностей пользователей, например:

a) в виде описательного файла, содержащего информацию из различных источников, описывающих имеющиеся данные и их характеристики;

b) в виде файла в формате ASCII (см. раздел 10.2.2.2);

c) в виде файла со значениями, разделенными запятыми (CSV) — это формат данных с полями или столбцами, разделенными запятой, и записями или рядами, разделенными новыми линиями. Поля, которые содержат особый знак (запятая, новая строка или двойные кавычки), должны быть вставлены в двойные кавычки. Если линия содержит отдельную запись, которая является собственной строкой, она может быть вставлена в двойные кавычки;

d) другие форматы, определенные пользователем.

10.3.2 Извлечение данных с одной переменной

Иногда неудобно хранить данные в виде многочисленных временных рядов. Это связано с большим количеством переменных, которые могут наблюдаться на каждой станции, а также со способом извлечения этих данных.

Например, после первичного расчета суммарной испаряемости по климатологическим данным может понадобиться только поиск отдельных переменных. Это обычно нужно для пространственной интерполяции и/или для картирования данных, например данных о температуре, необходимых для расчета снеготаяния или данных о солнечной радиации — для оценки потенциального урожая зерновых. В таких случаях процесс поиска будет неэффективным, поскольку придется обращаться к большому числу станций, хотя искомая переменная наблюдалась лишь на нескольких станциях.
В предыдущих разделах было показано, как такие проблемы можно преодолеть (раздел 10.2.3.10), используя указатели данных, которые хранятся вместе с каждым значением и указывают на место хранения записи, содержащей искомую переменную. Однако если эту методику использовать для многих переменных, то нагрузка на указатели становится чрезмерной. Решение этой проблемы заключается в том, чтобы убрать важные переменные (к которым нужен частый доступ) и хранить их в виде временных рядов с одной переменной. Это — стандартная практика для осадков, измеренных на климатологических станциях. Такое извлечение важных переменных лучше всего выполнять при ежегодном обновлении данных, когда проверенные данные передаются в архив.

Следует подчеркнуть, что решение об извлечении одной переменной зависит от вероятности того, что данные будут найдены предполагаемым способом. Частый поиск величин для конкретной переменной подсказывает, что ей нужно отделить от комплектов данных со многими переменными. Чем меньше количество станций, на которых наблюдается эта переменная, тем менее эффективно ее хранение в комплектах данных со многими переменными, и тем быстрее ее нужно выделить в отдельный формат.

Если же, как это обычно бывает с анализом качества воды, сразу требуется несколько переменных за один и тот же период времени, тогда первоначальный формат со многими переменными наиболее удобен.

10.3.3 Система поиска данных

Вопрос поиска данных подробно рассмотрен в публикации Guidelines to Computerized Data Processing in Operational Hydrology and Land and Water Management (Руководящие указания для компьютерной обработки оперативной гидрологии, земельном и водном хозяйстве) (WMO-No. 634). Возможность быстрого нахождения необходимой информации является одним из преимуществ электронной обработки гидрологических данных. Эффективные системы поиска информации позволяют гидрологу или плановику сконцентрировать свое внимание на анализе данных, не занимаясь поиском, сортировкой и ручной обработкой данных или сводить эти работы к минимуму. Всесторонняя система поиска данных включает следующие моменты:

a) большой диапазон критериев для отбора данных; обычно такими критериями являются измеряемые переменные, бассейн, станция, период времени и величина переменной (диапазон). В частности необходимо, чтобы имелась возможность выбрать данные по любой комбинации из этих критериев;

b) интерполяция/объединение (агрегация) данных по времени и пространству — пожалуй, наиболее важным из этих вариантов является преобразование нерегулярных временных рядов в регулярные путем интерполяции и преобразование временных рядов за короткие интервалы времени в суммарные или усредненные ряды с большими интервалами (т. е. превращение часовных значений в суточные или суточные в декадные). Если используется какая-либо форма географической/гидрологической справочной системы, то можно применять пространственное преобразование данных;

c) простые статистические расчеты — должны существовать средства, которые давали бы возможность использовать простые статистические расчеты для выбранных временных периодов. Следует рассчитывать суммы (если нужно), средние, стандартные отклонения и диаграммы. Более полная статистическая обработка, которая включает взаимную корреляцию, множественную регрессию, анализ вероятностей и т. д., может предлагаться как часть стандартной системы поиска, либо выбранная информация отсылается в статистические программные пакеты (или в программу пользователя), как это описывается ниже;

d) выбор формата вывода, который должен обеспечивать прямой вывод информации в специальных форматах таблиц или графиков, а также создание файлов с данными в формате, пригодном для дальнейшей обработки. В последнем случае отобранные данные могут храниться для ввода в статистические пакеты или специальные программы потребителей. Определенный формат вывода может быть пригоден и для обмена гидрологической информацией на национальном и международном уровнях;

e) выбор устройства для вывода информации — необходимо иметь широкую возможность выбора устройств для вывода информации. Как минимум, оно должно включать принтер, дисплей и дисковый файл. По возможности, необходимо иметь также плоттер. Данные, предназначенные для передачи на пленку или на гибкий диск, обычно прежде всего накапливаются на жестком диске и передаются вместе с отдельной программой, требующей ряд переменных, определенных потребителем.

Очень важно, чтобы найденные данные, особенно те, которые предполагается выводить в табличной форме, содержали коды и отметки в виде «флажков», отражающих их статус и степень надежности (раздел 9.3). Потребитель должен иметь доступ к справочной информации, касающейся общий надежности и/или ненадежности данных в течение определенных
ГЛАВА 10. ХРАНЕНИЕ, ДОСТУП И РАСПРОСТРАНЕНИЕ ДАННЫХ

периодов, посредством файлов описания станции (раздел 2.5.2) или каталогов данных.

Существуют три пути поиска данных:

a) обычная практика вывода данных: суммирование данных и подготовка статистических рядов на ежемесячной и ежегодной основе;

b) вывод данных, определенных потребителем: после обращения к гидрологическим ежегодникам и каталогам данных, потребитель может запросить информацию, используя соответствующую форму, и поиск данных происходит, как при обычной работе с пакетами данных. Операторы или другой технический персонал делают это при помощи соответствующего программного обеспечения.

Форма вывода информации должна подходить для разных устройств и носителей;

c) вывод данных с жесткого диска (в интерактивном режиме): существует несколько способов вывода данных с жесткого диска, и поскольку они широко применяются, они будут рассмотрены ниже.

Как уже отмечалось в этой главе и как показано на рисунке I.10.4, нахождение главной базы данных на жестком диске компьютера делает возможным работу с ней в диалоговом режиме. Однако, за исключением систем с небольшим объемом информации, или при большой емкости жестких дисков компьютера, основная часть базы данных должна храниться в автономном режиме. Таким образом, режим диалога годится только для ограниченного объема информации (самой последней). В некоторых системах удаленные потребители могут направлять оператору запросы на определенную информацию, находящуюся в автономном режиме хранения. Но эти запросы удовлетворяются не сразу, и, учитывая затраты времени и стоимость пересылки информации, это может стать очень неэффективным.

Вероятно, наиболее эффективным способом вывода информации с жестких дисков является двухэтапный процесс. На первом этапе диалоговая программа позволяет потребителю уточнить требования по выбору данных, а на втором — это задание выполняется автоматически в пакетном режиме, а затем выводится. Формат диалога между потребителем и компьютером называется системой меню. Получать большие выборки информации в пакетном режиме гораздо эффективнее, поскольку компьютер может распределить свои ресурсы, особенно для получения данных из томов в автономном режиме.

Все выше сказанное, прежде всего, относится к выводу информации в управляемом режиме из кадастровой гидрологической системы. Однако более фундаментальным требованием является возможность просмотра собранной и хранящей информации в системах реального времени. Варианты поиска могут включать как телеметрические запросы к отдельной или нескольким станциям, так и построение графиков и просмотра на дисплее недавно собранной информации или последних прогнозов в обрабатывающем центре.

Рисунок I.10.4. Размещение комплектов данных в онлайновом и автономном режимах
10.4 РАСПРОСТРАНЕНИЕ ДАННЫХ

10.4.1 Общие положения

Данные не обладают ценностью, пока не используются; только когда гидрологические данные анализируются и используются как часть процесса планирования управления водными ресурсами и процесса принятия решений, они становятся по-настоящему ценными. Качественные данные, собранные за длительный период времени, нужны для того, чтобы определить среднее значение и изменчивость (сезонную и межгодовую) любой гидрологической переменной. Таким образом, нормативный срок сбора данных, необходимый для надежной оценки средних годовых осадков, составляет 30 лет. Однако, учитывая наличие периодичности с весьма длительными циклами, которая наблюдается в некоторых частях мира, даже эта оценка не достаточно. Кроме того, из-за явных свидетельств глобального потепления и связанного с ним изменения климата, ученые и инженеры требуются данные длительных наблюдений для обнаружения изменения и отслеживания тенденций в количестве осадков, речном стоке и стоке подземных вод для подготовки планов действий в ситуации изменения водных ресурсов.

Чтобы быть полезными, высококачественные данные должны быть легко доступны широкому кругу пользователей. Данные часто собираются агентствами, которые сами являются основными пользователями данных. Таким образом, сбор данных поддерживает работу агентства, например при водоснабжении населения, эксплуатации водопроводных систем и гидроэлектростанций. Такие агентства часто, но не всегда, являются государственными. В таких случаях международное распространение данных не является задачей этого агентства. В данном Руководстве рассматриваются пути, с помощью которых потенциальные пользователи данных, которые не являются частью агентства, собирающего данные, могут получить доступ к гидрометеорологическим данным при условии, что данные были введены в соответствующую систему баз данных, как было описано ранее.

Потенциальными внешними пользователями гидрологических данных может быть персонал других правительственных ведомств, частные водопользователи, гидроэнергетические компании, консультанты по инженерно-техническим вопросам или вопросам охраны окружающей среды, представители научного сообщества и исследователи. Существует широкий круг потенциальных пользователей, чьи требования к данным довольно разнятся, — одним нужны исключительно данные для конкретной точки на конкретной реке, другим — данные по региону, целой стране или даже группе стран (в случаях, если река протекает по территориям нескольких стран).

Доступ к данным

Международный доступ к данным, как метеорологическим, так и к гидрологическим, является вопросом, который уже много лет привлекает внимание Всемирной Метеорологической Организации и ее стран-членов. Это привело к тому, что Двенадцатый конгресс ВМО в 1995 г. принял резолюцию 40 (Кг-XII), которая определяет политику и практику ВМО в области обмена метеорологическими и гидрологическими данными и продуктами. На последующей сессии в 1999 г. Тринадцатый конгресс принял резолюцию 25 (Кг-XIII) — Обмен гидрологическими данными и продуктами, определяя таким образом политику и практику ВМО в области международного обмена гидрологическими данными и продуктами. Эта резолюция предоставляет план по содействию организации международного доступа к гидрологическим данным и продуктам (см. ВМО-№ 925). Полный текст резолюции (Кг–XIII) доступен на сайте по адресу: http://www.wmo.int/pages/prog/hwrp/documents/Resolution_25.pdf.

10.4.2 Каталоги доступности данных

Первым требованием любого пользователя данных обычно будут карты, показывающие расположение всех станций различных типов в сочетании с таблицами, показывающими данные, собранные в каждой точке, и периоды наблюдений в них. Этот тип информации формирует базу метаданных комплектов данных и может быть отдельным комплектом данных или в виде отдельных каталогов. Это позволяет пользователю получить доступ к гидрометеорологическим данным при условии, что данные были введены в соответствующую систему баз данных, как было описано ранее.

Традиционным средством предоставления такой информации пользователям были каталоги ежегодного издания, хотя иногда обобщающие каталоги данных могут издаваться раз в 3–5 лет, поскольку сети по сбору данных, как правило, достаточно стабильны во времени. Этот подход прост, но, возможно, дорог с точки зрения расходов на печать, и каталоги могут не быть одинаково легко доступны для всех пользователей. Однако на протяжении многих лет печатные каталоги были наиболее
эффективным средством распространения информации по доступности данных и будут оставаться таковыми в странах, где доступ к сети Интернет не является повсеместным и надежным.

Однако в будущем наиболее распространенным средством сделать такой каталог данных доступным для пользователей будет, вероятно, распространение через сетевой браузер, напрямую связанный с метаданными. Это является преимуществом тогда, когда у всех пользователей есть доступ к Интернету, и нет потребности в ежегодниках. Кроме того, в этом случае значительно проще обеспечивать техническое обслуживание системы и обновлять ее.

В предоставляемую пользователям информацию по каждому измеряемому водосбору следует включать:

а) описание водосбора, например размер, геоморфологические характеристики, сведения о рельфе, растительности, землепользовании;

б) название климатической зоны и средние годовые значения осадков и испарения на данном водосборе;

c) расположение, тип и качество водомерной станции;

d) подробности регулирования стока выше станции или другие факторы, которые могут усложнить использование данных наблюдений;

е) период, полноту и качество данных по расходам и качеству воды, включая транспортировку наносов;

f) расположение метеорологических станций на водосборе или около него и период их действия.

Эта информация сгруппирована и рассматривается под тремя названиями: описательная информация, карта водосбора и имеющиеся данные.

Для того чтобы помочь потребителям определить отвечающие их целям измеряемые водосборы, им следует предоставить описание характеристик каждого бассейна и основных свойств измерительных устройств, а также необходимо показать степень доступности и качества стоковых данных.

Предлагаемые названия и соответствующая информация представлена в таблице I.10.7. На практике не все подробности по каждому измеряемому водосбору можно найти под этими названиями, но рекомендуется везде поддерживать одинаковый формат.

Пример, дополняющий таблицу I.10.7, приводится на рисунке I.10.5. Важно иметь карту для каждого водосбора или группы водосборов. Карта должна иметь масштаб, удобный для нанесения информации. Для водосборов разного размера могут применяться карты разного масштаба. В ближайшем будущем информация для составления карт будет храниться непосредственно в компьютере при помощи географических информационных систем, для того чтобы ее легко было просмотреть в различных масштабах. Информация, которую следует наносить на карту, приводится в таблице I.10.8, а основной пример показан на рисунке I.10.6.

Страница, характеризующая имеющиеся данные, должна быть выполнена в виде короткого оглавления по проверенным и исправленным данным о месячных осадках и стоке, а также годовым данным о качестве воды. В случае, когда на одном участке реки работают несколько гидрометрических станций, необходимо указать соответствующую справочную информацию. Все станции и их период записи показаны на карте, описанной в предыдущих разделах, так что будет достаточным ограничить доступность данных для дождемеров и выбранных наборов станций стоковых осадков. Станции с долгими периодами могут потребовать нескольких страниц для обеспечения адекватных масштабов четкости.

Информацию из таблицы I.10.9 рекомендуется включать в страницу доступности данных.

10.4.3 Краткие сводки

Многие организации публикуют краткие сводки данных. Они могут включать средние климатические данные, статистику осадков, данные и статистику о расходах и данные о качестве воды или проверку.

Обычно такие сводки содержат информацию о станции, включая номер станции; координаты широты и долготы; тип наблюдаемой информации; другие характеристики створа (название, название реки, опорная сеть, площадь водосбора и т.д.); период действия; период обработки данных и сводки данных по измеренным ежесуточным, ежемесячным и годовым величинам (включая минимальное, максимальное и среднее значения). Информация может быть представлена в текстовом виде или оформлена на микробише, а также может предоставляться на носителях, совместимых с компьютером, например на дисках или лазерных дисках (CD-ROM).

10.4.4 Ежегодники

Ежегодники являются очень эффективным средством распространения гидрологических данных, хотя в них могут быть опубликованы только определенные типы данных. Например, использование современных регистрирующих устройств и телеметрических датчиков позволяет выполнять наблюдение за осадками и уровнями воды (и, следовательно, стоком) каждые 15, 30, 60 минут, что приводит к получению
Таблица I.10.7. Пример формата каталога данных

<table>
<thead>
<tr>
<th>Идентификация</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Название</td>
<td>Название реки, станции и номер станции</td>
</tr>
<tr>
<td>Речной бассейн</td>
<td>Название и номер бассейна</td>
</tr>
<tr>
<td>Местоположение</td>
<td>Местоположение гидрометрической станции по широте, долготе и местная координатная сетка</td>
</tr>
</tbody>
</table>

Детали водосбора

<table>
<thead>
<tr>
<th>Площадь водосбора</th>
<th>Площадь водосбора в квадратных километрах</th>
</tr>
</thead>
<tbody>
<tr>
<td>Климатические зоны</td>
<td>Климат всего водосбора, выраженный в биоклиматических зонах, отражающих количество и распространение осадков</td>
</tr>
<tr>
<td>Среднее количество осадков</td>
<td>Оценка среднегодового количества осадков, отнесенного к центру водосбора, а для больших водосборов — диапазон изменения годовых осадков по всему водосбору. Необходимо указать источник информации</td>
</tr>
<tr>
<td>Испарение с водной поверхности</td>
<td>Оценка среднегодовой величины испарения по данным испарителя, отнесенной к центру водосбора. Необходимо указать источник информации</td>
</tr>
<tr>
<td>Геоморфология</td>
<td>Описание рельефа, земной поверхности и геологического строения водосбора</td>
</tr>
</tbody>
</table>

Формы рельефа

| Количественная оценка соотношения основных форм рельефа в пределах водосбора |

Естественная растительность

| Описание естественной растительности, полученное по данным аэрофотосъемки |

Земли без растительности

| Соотношение естественных пустых земель и окультуренных. Необходимо указать источницики и дату получения данных о такой оценке |

Современная растительность

| Описание современного растительного покрова в водосборном бассейне по данным справочных источников |

Землепользование

| Справки по землепользованию. Необходимо дать точный источник информации: полевые наблюдения, карта сельскохозяйственного землепользования или более подробные оценки |

Регулирование

| Справки по разработкам выше гидрометрического створа, которые могут повлиять на режим стока. Должны быть перечислены возможные источники подробной информации |

Общие замечания

| Там, где на станции не измеряется общий сток с водосбора, или его значение не представляет значения, приводится не характеристики водосбора, а лишь комментарии к специальным функциям и назначению гидрометрической станции |

Детали описания гидрометрической станции

<table>
<thead>
<tr>
<th>Период наблюдений</th>
<th>Месч и год открытия и закрытия гидрометрической станции. В случае, когда на одном участке реки работают несколько гидрометрических станций, необходимо указать соответствующую справочную информацию</th>
</tr>
</thead>
<tbody>
<tr>
<td>Классификация</td>
<td>Классификация станции в системе гидрологической сети (т. е. специализированная или базовая станция)</td>
</tr>
<tr>
<td>Оборудование станции</td>
<td>Описание приборов по измерению и регистрации уровня воды. Замена любых устройств должна фиксироваться</td>
</tr>
<tr>
<td>Запись уровня</td>
<td>Среднегодовой процент зафиксированных данных и процентное выражение тех данных, которые необходимо интерпретировать при обработке (ошибочные данные)</td>
</tr>
<tr>
<td>Кривая расхода</td>
<td>Краткие комментарии относительно метода построения и качества связи между расходом и уровнем, а также максимальный измеренный расход. По возможности, следует показать соотношение между измеренным и максимальным стоком</td>
</tr>
<tr>
<td>Степень чувствительности</td>
<td>Следует дать какую-либо характеристику чувствительности кривой расхода. Наиболее предпочтительным способом определения характеристики чувствительности является процент от объема стока, который может быть определен с точностью до 1, 2 или 5 % при ошибке в регистрации уровня на 1 мм. Отметим, что эта характеристика зависит от наклона кривой расхода и от кривой продолжительности стока. В других случаях чувствительность может определяться с учетом ошибки в уровне на 10 или 100 мм</td>
</tr>
<tr>
<td>ИДентификация реки</td>
<td>Ферма Уитли</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Речной бассейн</td>
<td>Река Уоррен</td>
</tr>
<tr>
<td>Местоположение</td>
<td>Широта 34° 22' 14" ю. ш.</td>
</tr>
<tr>
<td></td>
<td>Долгота 116° 16' 34" в. д.</td>
</tr>
<tr>
<td>Характеристики водосбора</td>
<td></td>
</tr>
<tr>
<td>Площадь водосбора</td>
<td>2 910 км²</td>
</tr>
<tr>
<td>Климатическая зона</td>
<td>Средиземноморский климат; с низкими величинами осадков зимой</td>
</tr>
<tr>
<td>Среднее количество осадков</td>
<td>735 мм/год (диапазон изменений 950–550)</td>
</tr>
<tr>
<td>Испарение с водной поверхности</td>
<td>1 275 мм/год (диапазон изменений 1 250–1 400)</td>
</tr>
<tr>
<td>Геоморфология</td>
<td>Рельеф низкий и средний; пологое плато, на котором лежит долина реки, бокситолатеритные почвы поверх скальных и каменистых образований</td>
</tr>
<tr>
<td>Формы рельефа</td>
<td>Виды карт; атлас австралийских почв (ссылка 8)</td>
</tr>
<tr>
<td></td>
<td>16% — Ub90 рассеченные латериты; холмистая местность с вкраплением желтых почв каменистыми россыпями</td>
</tr>
<tr>
<td></td>
<td>14% — Cb43, T6B заболоченные равнины; мелкая русовая сеть с выщелоченным песком и подзолистой почвой</td>
</tr>
<tr>
<td></td>
<td>57% — Cd22, Tc6 латеритное плато; возвышенности с песчаными и гравийными образованиями над слоем глины</td>
</tr>
<tr>
<td></td>
<td>13% — T6, Ta9 долины рек; умеренные склоны, главным образом желтые подзолистые почвы</td>
</tr>
<tr>
<td>Естественная растительность</td>
<td>Виды карт; съемка растительности WA (ссылка 1)</td>
</tr>
<tr>
<td></td>
<td>20% — eM1 лесистая местность; лесистая местность на рассеченных латеритных почвах</td>
</tr>
<tr>
<td></td>
<td>70% — eMs леса; эвкалиптовые леса на латеритном плато</td>
</tr>
<tr>
<td></td>
<td>10% — mLi заболевленная лесистая местность; кленовые леса на заболоченных равнинах</td>
</tr>
<tr>
<td>Незаселенные земли</td>
<td>Около 40 % площади без лесов (только 27 % расчищено в 1965 г.)</td>
</tr>
<tr>
<td>Землепользование</td>
<td>Около половины водосбора — государственные леса, расчищенные районы в верховьях используются под овечьи пастбища и под поля для зерновых, в низовьях — для животноводства</td>
</tr>
<tr>
<td>Регулирование</td>
<td>Небольшие сельские плотины на малых реках</td>
</tr>
<tr>
<td>Детали гидрометрической станции</td>
<td></td>
</tr>
<tr>
<td>Период действия</td>
<td>С мая 1970 г</td>
</tr>
<tr>
<td>Классификация</td>
<td>Гидрологическая сеть — водосбор главной реки</td>
</tr>
<tr>
<td>Оборудование станции</td>
<td>L&S серво-манометр и самописец непрерывной записи. Каменистое контрольное сечение для низкого и среднего стока, гидрометрический створ для высокого стока</td>
</tr>
<tr>
<td>Регистрация уровня</td>
<td>96,5 % зарегистрировано, 7,6 % с ошибками</td>
</tr>
<tr>
<td>Кривая расходов</td>
<td>От низа до середины обусловлена контрольным сечением, от середины до верха связь со стоком хорошая, но, теоретически, вне диапазона измерений. Многоразмерные измерения стока до 97,04 м³·с⁻¹, которые охватывают 99 % от общего зафиксированного стока</td>
</tr>
<tr>
<td>Степень чувствительности</td>
<td>99 % стока < 1; 100 % стока < 2</td>
</tr>
</tbody>
</table>

Рисунок I.10.5. Пример страницы каталога данных
Таблица I.10.8. Детали, нанесенные на карту

<table>
<thead>
<tr>
<th>Идентификация</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Граница водосбора</td>
<td>Масштаб и карта-источник, на основании которого была определена граница водосбора</td>
</tr>
<tr>
<td>Речная сеть</td>
<td>Количество рек, которые должны наноситься на карту, зависит от площади водосбора. Источник данных о реке</td>
</tr>
<tr>
<td>Масштаб водосбора</td>
<td>Различный и зависит от размера бассейна</td>
</tr>
<tr>
<td>Осадкомерные станции</td>
<td>Расположение и номера станций, период действия и тип осадкомера, например плвиограф суточной записи или суммарный</td>
</tr>
<tr>
<td>Изогиеты осадков (необязательно)</td>
<td>Изогиеты среднегодовых осадков по водосбору с пояснениями</td>
</tr>
<tr>
<td>Землепользование (необязательно)</td>
<td>По возможности, указать границы основного землепользования. Например, границы лесов, сельскохозяйственных и урбанизированных земель</td>
</tr>
</tbody>
</table>

Таблица I.10.9. Общие характеристики страниц по наличию данных

<table>
<thead>
<tr>
<th>Идентификация</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Данные о стоке</td>
<td>Имеющиеся данные наблюдений и их качество, четко представленные в ежемесячной форме</td>
</tr>
<tr>
<td>Данные об осадках</td>
<td>Имеющиеся данные наблюдений осадков и их качество, четко представляемые от месяца к месяцу по базовым плвиографам и неавтоматическим осадкомерам. Период данных наблюдений может быть ограничен периодом работы гидрометрической станции из практических соображений</td>
</tr>
<tr>
<td>Качество воды</td>
<td>Число проб, анализируемых ежегодно в рамках статистически значимого набора групп анализов. Рекомендуются следующие группы анализов:</td>
</tr>
<tr>
<td></td>
<td>a) пробы, предназначенные только для базового анализа (любой или все коэффициенты электропроводности, pH, температура воды в реке, цвет или параметры мутности);</td>
</tr>
<tr>
<td></td>
<td>b) пробы на главные ионы;</td>
</tr>
<tr>
<td></td>
<td>c) пробы на органику;</td>
</tr>
<tr>
<td></td>
<td>d) пробы на тяжелые металлы или другие микроэлементы.</td>
</tr>
</tbody>
</table>

Рисунок I.10.6. Водосбор реки в Дании

от 8 760 до 35 040 значений в год. Это непрактично и обычно не требуется публиковать такие частые данные, поэтому в ежегодниках зачастую приводится лишь количество осадков за сутки или месяц и среднесуточные расходы воды.

Данные о подземных водах очень медленно изменяются со временем и иногда наблюдаются лишь периодически, раз в неделю или месяц. Поэтому такие комплекты данных публикуются полностью. Для других климатологических переменных, таких как температура, скорость ветра и излучение, часто приводятся лишь средние месячные значения.

Примеры типичного ежегодника заимствованы из Национального архива данных по речному стоку Великобритании (NRFA) и показаны на рисунках с I.10.7 по I.10.13.
10.4.5 Экспорт данных на заказ

Наиболее часто гидрометрические комплекты данных распространяются среди пользователей через Интернет, где пользователи могут использовать карту и интерфейс табличных диалоговых окон для выбора интересующей станции и типов данных, которые они хотят скачать. Доступ к Интернету позволяет пользователям перебирать комплект данных и определять, какие типы данных им требуются от выбранной станции или набора станций.

Некоторые системы позволяют разрешить пользователям скачивать выбранные данные прямо на их ПК, или же они могут лишь разместить электронный заказ на данные на сайте. Хорошей причиной для того, чтобы не разрешать пользователям скачивать любые данные является то, что объемы данных большие, и передача данных может быть неприемлемо медленной через некоторых провайдеров, особенно там, где используются медленная модемная связь. По этой же причине предоставление данных пользователям в форме файлов, прикрепленных к электронному сообщению, может быть проблематично из-за ограничений на объем передаваемых сообщений, существующих на некоторых Интернет-порталах.

Во многих случаях предпочтительным вариантом для пользователей, нуждающихся в данных, является размещение запроса на сайте, в ответ на который данные предоставляются на компакт-диске или передаются с помощью протокола передачи файлов. В таком случае пользователь в состоянии самостоятельно загрузить их с сайта.

Данные могут быть свободно доступны на сайте, особенно там, где пользователь может прямо скачивать их на компьютер. Однако в некоторых случаях пользователь должен заплатить за доставку данных для покрытия расходов, связанных с подготовкой диска. Хотя некоторые пользователи могут возражать против оплаты данных, она зачастую оправдана, поскольку предоставляющими данные агентства должны обосновывать свое существование его учредителям и менеджерам. Тот факт, что пользователи платят за данные, может обеспечить финансирование по крайней мере части потребностей агентств, но, что более важно, он демонстрирует, что работа агентства ценится внешними пользователями или клиентами.

10.4.6 Форматы обмена данными

На данный момент не существует стандартных форматов обмена данными для гидрологических данных. Единственные стандарты, которые существуют де-факто, являются стандартными форматами данных, производимыми большинством регистрирующих устройств и системами баз данных. Современные форматы обмена данными, как правило, делятся на две категории, рассматриваемые ниже.

Текстовые файлы

Текстовые файлы обладают преимуществом легкой читаемости для пользователя с простейшим программным обеспечением. Временные ряды данных обычно представлены как столбцы дат, времени и значений, каждое значение разделено разделителем, которым может быть запятая (результатом чего является значение, разделенное запятой, или файл CSV), или другой знак, или фиксированное число пробелов.

Собственный формат

Недостатком текстовых форматов является размер итогоового файла. Многие системы программного обеспечения используют собственные форматы, которые используют память гораздо более эффективно. Результатом этого являются файлы меньшего размера, которые занимают меньше места на дисках компьютера или средствах передачи информации и быстрее перемещаются в Интернете. Недостатком, конечно, является то, что требуется специализированное программное обеспечение для чтения этих файлов.

Рисунок I.10.7. Карта гидрометрических станций Великобритании (NRFA)
I.10-26

руководство по гидрологической практике

039002 1996

р. Темза — Дэйс-Вейр

Измеритель: EA
Первый год: 1938

Код ячейки: 41 (SU) 568 935
Высота станции (м над ур. моря): 45,80

Площадь водосбора (кв. км): 3 444,7
Макс. высота (м над ур. моря): 330

Ежедневные измеренные расходы воды (кубический метр в секунду)
День

Янв

Фев

Март

Апр

Май

Июнь

Июль

Авг

Сент

Окт

Нояб

Дек

1

56,600

25,800

42,600

24,800

20,400

11,000

5,380

3,970

3,730

4,120

3,520

10,000

2

57,500

24,200

40,400

21,800

23,200

8,850

5,490

3,710

3,050

3,960

4,020

9,970

3

60,600

24,200

39,100

21,100

19,300

9,250

5,320

3,640

2,770

3,550

4,060

11,100

4

56,300

22,600

38,600

20,800

13,100

9,160

5,140

3,630

2,700

2,860

7,280

12,600

5

54,700

22,400

37,700

21,100

13,900

9,130

5,170

3,430

3,120

3,090

6,880

15,400

6

54,900

24,000

33,800

20,800

15,500

8,860

6,050

3,200

3,100

3,060

8,280

13,500

7

63,400

24,000

33,700

20,500

15,500

10,100

5,640

3,060

3,060

3,040

5,620

11,200

8

77,900

23,600

33,500

20,100

16,400

14,600

5,040

2,750

2,980

3,300

5,350

9,310

9

101,000

30,700

35,000

20,100

15,500

11,800

5,270

2,760

2,970

4,110

6,450

9,320

10

109,000

53,600

35,900

21,500

14,200

11,200

5,410

3,720

2,880

3,250

5,810

8,870

11

97,600

57,200

33,300

22,500

14,100

9,190

3,870

4,850

2,990

2,980

3,210

8,810

12

84,100

81,600

34,600

22,500

14,200

8,880

5,500

4,320

3,220

3,520

4,470

8,840

13

77,800

99,800

36,000

48,400

14,100

8,410

4,730

4,220

3,250

3,430

5,480

8,340

14

69,400

90,200

35,200

40,600

13,800

7,440

3,870

3,790

3,020

3,130

4,590

8,140

15

59,300

64,100

32,000

31,500

13,900

5,880

3,940

3,680

2,940

3,170

4,340

8,500

16

54,800

53,900

31,100

26,400

13,300

6,240

3,810

3,380

2,840

3,220

5,240

8,020

17

50,400

48,400

30,600

24,700

13,200

6,020

3,820

3,340

3,180

3,420

6,390

8,430

18

46,500

48,400

25,500

21,100

13,200

5,980

3,700

2,850

2,500

4,2900

5,900

8,020

19

45,600

47,700

27,300

23,900

14,100

5,990

2,650

2,840

2,620

4,030

10,700

10,500

20

44,300

40,700

26,700

24,400

13,900

5,970

3,210

2,940

2,910

3,210

11,600

12,900

21

41,100

38,500

26,800

23,500

13,900

5,930

3,720

3,170

2,900

3,680

11,400

15,000

22

37,400

37,100

27,800

25,200

13,400

6,130

3,350

3,340

2,850

3,500

10,700

14,300

23

37,900

37,200

33,900

35,100

14,000

5.,990

3,260

5,340

2,850

3,380

9,080

12,100

24

38,400

59,000

36,400

42,800

19,500

5,660

3,210

6,820

3,150

3,410

8,330

10,100

25

37,600

95,400

32,500

26,800

15,300

5,510

3,200

7,110

3,660

3,010

11,900

10,700

26

33,700

92,500

34,200

25,000

15,700

5,480

3,270

4,790

3,750

3,530

11,900

10,100

27

32,900

73,700

45,900

22,000

13,100

4,660

3,430

3,800

3,300

4,120

12,600

9,530

28

26,800

59,100

33,300

21,700

12,800

4,970

4,000

3,960

3,340

3,870

10,300

8,340

29

26,500

43,600

32,300

20,600

12,800

5,570

5,480

3,210

3,370

4,670

10,100

8,720

30

26,300

26,300

20,500

11,100

5,520

4,620

3,590

3,350

4,560

9,390

31

26,100

25,500

3,950

4,180

11,000

3,240

9,030
8,830

Среднее

54,400

49,750

33,470

25,390

14,750

7,646

4,339

3,851

3,078

3,539

7,496

Наименьшее

26,100

22,400

25,500

20,100

11,000

4,660

2,650

2,750

2,500

2,860

3,210

10,270
8,020

Наибольшее

109,000

99,800

45,900

48,400

23,200

14,600

6,050

7,110

3,750

4,670

12,600

15,400

Мес. сумма
млн куб. м)

145,70

124,70

89,64

65,82

39,52

19,82

11,62

10,32

7,98

9,48

19,43

27,52

Сток (мм)

42

36

26

19

11

6

3

3

2

3

6

8

Осадки (мм)

42

63

36

49

36

21

34

53

22

50

79

29

Статистические характеристики ежемесячных данных для предыдущих записей (октябрь 1938 г. — декабрь 1995 г.)
Средн. Среднее
расходы
Наимен.
(год)

56,450

56,680

44,600

30,650

20,140

14,260

8,397

7,073

8,666

14,960

30,750

45,570

6,252

5,548

5,619

4,255

2,854

1,504

0,401

0,290

1,740

2,782

3,751

5,308

1976

1976

1976

1976

1976

1976

1976

1976

1959

1959

1990

1975

Наибол.
(год)

133,600

120,800

163,200

85,060

61,140

41,560

48,810

18,690

38,640

74,570

128,100

128,700

1939

1977

1947

1951

1983

1955

1968

1977

1946

1960

1960

1960

Сток Среднее

44

40

35

23

16

11

7

5

7

12

23

35

Наимен.

5

4

4

3

2

1

0

0

1

2

3

4

Наибол.

104

85

127

64

48

31

38

15

29

58

96

100

Осадки Среднее

68

47

53

47

58

54

53

64

62

64

70

73

Наимен.

13

3

5

4

7

5

5

3

5

6

8

16

Наибол.

132

135

152

99

131

124

117

149

129

163

178

316
(продолж.)


ГЛАВА 10. ХРАНЕНИЕ, ДОСТУП И РАСПРОСТРАНЕНИЕ ДАННЫХ

Итоговые статистические характеристики

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Средний расход</td>
<td>18,070</td>
<td>28,050</td>
</tr>
<tr>
<td>Наименьший среднегодовой расход</td>
<td>10,100</td>
<td>1973 г.</td>
</tr>
<tr>
<td>Наибольший среднегодовой расход</td>
<td>51,290</td>
<td>1960 г.</td>
</tr>
<tr>
<td>Наименьшее среднемесячное значение</td>
<td>3,078</td>
<td>Сент. 0,290</td>
</tr>
<tr>
<td>Наибольшее среднемесячное значение</td>
<td>54,400</td>
<td>Янв. 163,200</td>
</tr>
<tr>
<td>Наименьшее суточное среднее</td>
<td>2,500</td>
<td>18 сент. 0,050</td>
</tr>
<tr>
<td>Наибольшее суточное среднее</td>
<td>109,000</td>
<td>10 янв. 349,000</td>
</tr>
<tr>
<td>Обеспеченность 10%</td>
<td>44,770</td>
<td>67,810</td>
</tr>
<tr>
<td>Обеспеченность 50%</td>
<td>9,412</td>
<td>15,940</td>
</tr>
<tr>
<td>Обеспеченность 95%</td>
<td>2,959</td>
<td>3,181</td>
</tr>
<tr>
<td>Годовая сумма (млн куб. м)</td>
<td>571,40</td>
<td>685,20</td>
</tr>
<tr>
<td>Годовой сток (мм)</td>
<td>166</td>
<td>257</td>
</tr>
<tr>
<td>Годовые осадки (мм)</td>
<td>514</td>
<td>713</td>
</tr>
</tbody>
</table>

(Годовые осадки за 1961–1990 гг. (мм) 690)

Факторы, влияющие на сток
- Отвод для общественного водоснабжения
- Сток уменьшен из-за промышленного и/или сельскохозяйственного водотведения
- Увеличение стока за счет возврата воды

Рисунок I.10.8. Пример таблицы данных, представленных в ежегоднике Национального архива данных по речному стоку Великобритании

Рисунок I.10.9. Характеристики станции

Рисунок I.10.10. Пример гидрографа, построенного по ежедневным данным о стоке

Рисунок I.10.11. Кривая продолжительности стока, построенная по ежедневным данным о стоке
Описание станции

Регулируемая тонкостенная плотина (шириной 5,48 м) с 15 радиальными водопропускными отверстиями; заграждение радиальных и рамочных отверстий заменено в 1969 г. Зависимость расхода от уровня основана на измерении стока на спаде при расходе > 70 м³·с⁻¹; при расходе > 100 м³·с⁻¹ вода переливается через плотину. Суточные значения (рассчитанные по измерениям, выполненным до 1973 г.) предоставляются по запросу. Данные о пиковом стоке находятся в обработке.

Описание водосбора

Смешанный геологический состав (зернистый известняк в верховьях, оксфордские глины в низовьях). Преимущественно сельскохозяйственное использование, наиболее развитое в долине реки.

Факторы, влияющие на сток

• Сток уменьшен из-за отведения воды для общественного водоснабжения
• Сток увеличен за счет возврата воды
• Сток уменьшен из-за промышленного и/или сельскохозяйственного водоотведения

Таблица I.10.10. Название и координаты гидрометрической станции в формате XML

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>gdf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nmf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rnf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Месячные осадки, выпавшие на водосбор (rnf): с 1938 по 2001 гг.

Рисунок I.10.13. Данные о речном стоке и осадках для водосбора (NRFA)
этом атрибута значение «Река Темза в Уоллингфорде», и что у него есть координаты с дальнейшим атрибутом «восточное положение» со значением 461300 и «северное положение» со значением 189900, выраженные в единицах измерения «метры». Символы «<» и «>» называются тегами; пары тегов заключаются значения данных, в то время как текст внутри тегов описывает заключенные данные.

Преимущества и недостатки XML являются предметом многочисленных дискуссий, их можно кратко сформулировать следующим образом.

Преимущества: способность отделить формат от содержания, и потому быстро применять разные правила отображения на ряд файлов одного формата. Данные могут эффективно храниться в файле, как и правила для этих данных, могут быть четко сформулированы, а программное обеспечение можно использовать для валидации данных в процессе чтения. Файлы могут быть эффективно найдены.

Недостатки: несжатый текстовый файл означает большой размер файла. Формат XML не был создан для описания временных рядов данных, что может увеличить размеры файла в 10 раз, по сравнению с несжатыми текстовыми форматами.

Одним из главных преимуществ XML является то, что он может быть приспособлен для конкретных целей. Например, библиотеки определили интернациональный формат для описания ярлыков и правил хранения информации о книгах в XML. Эти стандарты называют, что все библиотеки могут предоставлять данные, которые могут читать и понимать все другие библиотеки. То же самое постепенно происходит в более сложных областях наук окружающей среды. Уже существуют развивающиеся XML для широкого круга применения, включая описание молекул и язык моделирования в науке о климате (Climate Science Modelling Language, CSML). Данные ГИС теперь имеют всесторонний стандарт, основанный на XML под названием Географический язык разметки (Geography Markup Language, GML). Этот язык позволяет осуществлять взаимодействие цифровых карт из любых источников и может быть использован для распространения пространственных данных. Язык GML создан на основе стандарта XML и определен Открытым географическим консорциумом (OGC) для кодирования географической информации (Cox and others, 2004). GML служит в качестве языка моделирования для географических систем, а также является открытым форматом обмена географическими данными в сети Интернет.

Многие из определений этих специализаций XML (т. е. областей, в которых специализируется XML) все еще развиваются и потому должны быть использованы осторожно. Однако некоторые успешно определенные языки получили признание в стандартах ISO. Специализация XML в области гидрологии пока не разработана, хотя в Национальной службе погоды США был основан гидрологический консорциум по XML и был подготовлен проект гидрологической схемы XML.

Ссылки и дополнительная литература

Всемирная Метеорологическая Организация, 1983 г.:
Руководство по климатологической практике
(ВМО-№ 100), второе издание, Женева (http://www.wmo.int/pages/prog/wcp/cccl/guide/guide_climat_practices.html).
Всемирная Метеорологическая Организация, 2001 г.:
Обмен гидрологическими данными и информацией. Политика и практика ВМО (ВМО-№ 925), Женева.

<table>
<thead>
<tr>
<th>Сокращение</th>
<th>Полное название</th>
</tr>
</thead>
<tbody>
<tr>
<td>АДИС</td>
<td>Акустический доплеровский измеритель скорости течения</td>
</tr>
<tr>
<td>АДМИС</td>
<td>Акустический доплеровский многоточечный измеритель скорости течения</td>
</tr>
<tr>
<td>АПДТ</td>
<td>Акустический профилометр Доплера для измерения течения</td>
</tr>
<tr>
<td>БПК</td>
<td>Биохимическая потребность в кислороде</td>
</tr>
<tr>
<td>ВМО</td>
<td>Всемирная метеорологическая организация</td>
</tr>
<tr>
<td>ВОЗ</td>
<td>Всемирная организация здравоохранения</td>
</tr>
<tr>
<td>ВПО</td>
<td>Вертикальный профиль отражаемости</td>
</tr>
<tr>
<td>ГИО</td>
<td>Глобальный индекс осадков</td>
</tr>
<tr>
<td>ГИС</td>
<td>Географическая информационная система</td>
</tr>
<tr>
<td>ГОЕС</td>
<td>Геостационарный оперативный спутник по исследованиям окружающей среды</td>
</tr>
<tr>
<td>ГПКО</td>
<td>Глобальный проект по климатологии осадков</td>
</tr>
<tr>
<td>ГСМОС</td>
<td>Глобальная система мониторинга окружающей среды</td>
</tr>
<tr>
<td>ЕВМЕТСАТ</td>
<td>Европейская организация по эксплуатации meteorологических спутников</td>
</tr>
<tr>
<td>ЕОС</td>
<td>Спутники наблюдения за Землей</td>
</tr>
<tr>
<td>ЕРС</td>
<td>Европейский спутник дистанционного зондирования</td>
</tr>
<tr>
<td>ИСО</td>
<td>Международная организация по стандартизации</td>
</tr>
<tr>
<td>МАГАТЭ</td>
<td>Международное агентство по атомной энергии</td>
</tr>
<tr>
<td>МАГН</td>
<td>Международная ассоциация гидрологических наук</td>
</tr>
<tr>
<td>МКВРОС</td>
<td>Международная конференция по водным ресурсам и окружающей среде</td>
</tr>
<tr>
<td>МОДИС</td>
<td>Спектрорадиометр для получения изображений среднего разрешения</td>
</tr>
<tr>
<td>МПГБ</td>
<td>Международная программа геосферобiosферы</td>
</tr>
<tr>
<td>МСС</td>
<td>Многоспектральное устройство сканирования</td>
</tr>
<tr>
<td>НАСА</td>
<td>Национальное управление по аэронавтике и исследованию космического пространства</td>
</tr>
<tr>
<td>НУОА</td>
<td>Национальное управление по исследованию океанов и атмосферы</td>
</tr>
<tr>
<td>ПРООН</td>
<td>Программа развития Организации Объединенных Наций</td>
</tr>
<tr>
<td>РПР</td>
<td>Равное приращение расхода</td>
</tr>
<tr>
<td>РСА</td>
<td>Радар с синтезированной апертурой</td>
</tr>
<tr>
<td>РСП</td>
<td>Равная скорость перехода</td>
</tr>
<tr>
<td>СПОТ</td>
<td>Экспериментальный спутник для наблюдений за Землей</td>
</tr>
<tr>
<td>ССМ/И</td>
<td>Устройство для получения изображений с помощью специального микроволнового датчика</td>
</tr>
<tr>
<td>СУБД</td>
<td>Система управления базами данных</td>
</tr>
<tr>
<td>СУРБД</td>
<td>Системы управления реляционными базами данных</td>
</tr>
<tr>
<td>ТАЙРОС</td>
<td>Спутник для наблюдения в видимом и инфракрасном диапазонах спектра</td>
</tr>
<tr>
<td>ТРММ</td>
<td>Проект по измерению осадков в тропиках</td>
</tr>
<tr>
<td>УРОВР</td>
<td>Усовершенствованный радиометр очень высокого разрешения</td>
</tr>
<tr>
<td>ФАО</td>
<td>Продовольственная и сельскохозяйственная организация Объединенных Наций</td>
</tr>
<tr>
<td>ЮНЕП</td>
<td>Программа Организации Объединенных Наций по окружающей среде</td>
</tr>
<tr>
<td>ЮНЭСКО</td>
<td>Организация Объединенных Наций по вопросам образования, науки и культуры</td>
</tr>
<tr>
<td>ДМСП</td>
<td>Метеорологическая спутниковая программа Министерства обороны (США)</td>
</tr>
<tr>
<td>FDR</td>
<td>Рефлектометрия в частотной области</td>
</tr>
<tr>
<td>HTML</td>
<td>Язык разметки гипертекста</td>
</tr>
<tr>
<td>NAQUADAT</td>
<td>Канадский национальный банк данных о качестве воды</td>
</tr>
<tr>
<td>NRFA</td>
<td>Национальный архив данных по речному стоку (Соединенное Королевство)</td>
</tr>
<tr>
<td>TDR</td>
<td>Рефлектометрия во временной области</td>
</tr>
<tr>
<td>TIDEDA</td>
<td>Программное обеспечение для обработки зависимых от времени данных (Новая Зеландия)</td>
</tr>
<tr>
<td>WATSTORE</td>
<td>Система хранения и поиска данных о воде</td>
</tr>
<tr>
<td>XML</td>
<td>Расширяемый язык разметки</td>
</tr>
</tbody>
</table>